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Abstract 
 

The image super-resolution (SR) problem, particularly single image super-resolution (SISR), is 

an infamously troublesome and ill-posed challenge that has gained a long-standing and increasing 

research attention for decades, in the computer vision community. Fundamentally, SISR aims to 

reconstruct a high-resolution (HR) image from a single low-resolution (LR) image. With the emergence 

of deep learning, convolutional neural network (CNN) based SR methods have been capable of 

inheriting the powerful capacity of deep learning, hence the initiation of deep convolutional neural 

networks (DCNN) and have achieved significant performance improvements over their shallower 

predecessors. Where the progress of SR so far, has been mainly driven by the supervised or example-

based learning of LR-HR images pairs. Alongside the efforts put forth for architectural enhancements, 

data augmentation (DA) techniques have also been recently introduced for cost-effectively improving 

upon the predictive capabilities of example-based learning models. However, the implications are yet 

to be realised for the implementation of DA techniques in deep learning (DL) model applications, 
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particularly within a model’s predictive phase. Such that there has only been studies led into simple 

geometric manipulations with traditional SR models and shallow learning-based models, as of now. 

 

Parallel to the advancements contributed to the SR community, with the proliferation of aviation 

technology development, an increasing number of satellites in operation, and the demand for very high-

resolution (VHR) images, CNNs have attracted an increasing interest in many remote sensing (RS) 

applications. One of such applications is this paper’s focus, that is the spatial enhancement of low-

resolution satellite imagery, for advancing the surveillance and classification capability of land cover 

and land occupancy developments, climate change, emergency management, and crisis prevention, to 

name a few. Where amongst the RS community, it is mutually agreed that one of the most significant 

research areas in RS currently, is to develop methods for super-resolving the lower-resolution spectral 

bands processed by the respective satellites, to having the highest spatial resolution possible. 

 

Given this relation, this paper explores the application of DA techniques, namely geometric 

self-ensemble, extended with a randomised state-of-the-art translation scheme, in the predictive phase 

of a deep learning SR model, to inexpensively enhance the spatial resolution of LR multispectral 

images. For the purposes of this investigation, a state-of-the-art deep learning model is adapted for 

super-resolving the low-resolution (20m Ground Sampling Distance - GSD) spectral band images of 

the Sentinel-2 satellite mission, to support more detailed and accurate information extraction. 

 

Keywords: super-resolution; ill-posed challenge; computer vision; reconstruct; deep learning; 

deep convolutional neural network; example-based learning; data augmentation; predictive phase; 

geometric manipulations; remote sensing; spatial enhancement; satellite imagery; surveillance; 

classification; super-resolving; spatial resolution; geometric self-ensemble; translation; multispectral 

images; Sentinel-2 
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Chapter 1 | Introduction 
 

 Satellite RS renditions have established vast “applications in Earth surface observations” [1]1. 

Such that global monitoring is nowadays addressed by a large and increasing number of satellites [14], 

to uphold the demand and importance of the “societal applications” [15] aforementioned. However, 

Earth observation missions are conventionally known to operate at “medium to low resolution ranges” 

[16], to satisfy both a larger satellite swath (see Figure 1) and shorter temporal revisit period of the 

same observation site. Furthermore, with the “recent launch” [17] of multispectral instruments (MSI’s), 

many “widely used satellite imagers” [18] can acquire images with “multiple spectral bands with 

different spatial resolutions” (see Figure 2) [19]2. This presents other motives for recording 

observational data at varying spatial resolutions, including: “storage and transmission bandwidth 

restrictions, improved signal-to-noise ratio (SNR) in some bands through larger pixels, and bands 

designed for specific purposes that do not require high spatial resolution” [18]. Still, “it is often desired 

to have all bands available at the highest spatial resolution”, so as to support more “detailed and accurate 

information extraction”, for both observation and classification studies alike. 

 

 

 
1 Relevant to agricultural monitoring [2], environmental conservation [3], geophysical variable estimation [4], 

land-use and coverage [5], urban planning [6], climate change [7], risk management [4, 8], cartography [9], 

biodiversity [10], geology [11], hydrology [12], and oceanography [13]. 
2 Typically differing by scale factors of two to six. 
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Figure 1: Visualisation of some observation geometries, 

nominal swath widths, and land coverage modes of the 

RADARSAT-2 satellite [20]. 

 
 
Figure 2: Visualisation of the construction of true and 

infra-red colour composite images, from the respective 

spectral band raster dataset [21].

 

 

  Parallel to the development of aviation technologies and expanding industrial pressures [22], 

RS (see Figure 4) has evolved to being an “increasingly popular field in the modern society”. Such that 

one of the “most important” [19] research areas in RS currently, is to acquire high-quality renditions 

from “sensors mounted on satellites” [22] (see Figure 3), through the advancement of super-resolution 

techniques [19]. This invites study efforts to develop methods for “super-resolving the lower-resolution 

bands”, in the enablement of all image bands sharing the “highest spatial resolution” possible3. 

However, with the “continuous updating of optical instruments” [23], the spatial resolution employed 

by satellite images is “constantly improving”, but the “imaging chips and optical components become 

prohibitively expensive” [24, 25] for captivating very-high spatial resolution (VHSR) imagery. Which 

can render a satellite “impractical when large areas have to be covered or if multi-temporal analysis 

have to be undertaken” [17]. Nevertheless, when also factoring the limitations of “sensor accuracy, 

satellite orbital altitudes, and space-ground communication bandwidth” [22], to name a few, “many” 

satellites are not technologically capable of fulfilling the “fast-growing” spatial resolution demands of 

“new generation” societal applications, for both scientific and industrial interests. Hence why it has 

become of “paramount importance” [1] to develop “novel post-correction methods” [22], for enhancing 

the spatial resolution of native satellite observations. 

 

 

 

 
3 As higher spatially resolved images “represent more detailed information of the Earth’s surface” [22]. 



12 

 

 
 
Figure 3: Visualisation of six state-of-the-art imaging 

instruments used in a near-polar low-Earth orbit, 

employed by the Aqua (EOS PM) satellite [26]. 

 

 

 

 

 

 

 
 

 

 

Figure 4: Visualisation of a satellite remote sensing 

system with five components: sources of radiation (the Sun 

(Source 1), the Earth (Source 2), and an artificial 

radiation source (Source 3)); sensor interaction with the 

atmosphere and the Earth's surface. Demonstrating the 

exchange of instruction and observation data between the 

space (sensors) and ground segments [27].

 

 

  Aligned with the requirements for post-correction methods, several super-resolution (SR) 

methods have been introduced in RS [19] and have “attracted much attention” [22], with regards to the 

enhancement of “low-quality low-resolution RS images”. Where SR technologies have provided a 

“promising computational imaging approach to generate high-resolution images via an existing low-

resolution image or image sequences” [28], for a multitude of applications4. Given such, SR can be 

characterised as the process of “deriving images of higher resolution by applying an algorithm to a low-

resolution image” [32], or sequence of low-resolution images, respectively. This presents two problems, 

namely single-image SR (SISR) and multi-frame image SR (MISR) [33]. For the purposes of this study 

and although it is a “challenging setting” [34], SISR (see Figure 5) is focused upon, providing its recent 

developments [35] that has enabled it to emerge “as a possible way” [36] to increase the spatial 

resolution of low-resolution satellite imagery; without requiring “additional information from other 

sources” [37]5. From a practical perspective, SISR caters for an “unlimited amount of LR input images” 

[28], given the ability to synthetically augment data [18], which also provides a matter of convenience 

for efforts put forth to investigate this study at vaster measures. Achieving greater spatial resolutions of 

satellite imagery, allows for a “finer” [36] posterior analysis [34] of Earth’s observation missions, 

through acquiring “greater details” and an increasing amount of knowledge regarding the “true 

conditions of the Earth”6. 

 

 

 
4 Including medical diagnostic imaging [29], radar imaging systems [30], and satellite sensor imaging [31], to 

name a few. 
5 SISR methods depend upon the spatial features of an original, high-resolution variant (learning-based SR) of a 

given image, to “increase its resolution”. 
6 Both presently and historically. 
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Figure 5: Visualisation of a convolutional neural network (CNN) framework, demonstrating end-to-end up-sampling for 

single-image super-resolution (SISR) [38]. 

 

 

  Currently, deep learning-based methods have become “predominant in every image processing 

and computer vision task” [40, 34, 39], due to their performance offerings [41]. And in recent years, 

deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have been 

investigated and discovered to be “very effective” [19] for combating SR problem areas; one of such 

areas is SISR, where CNNs have “excelled” [34] and “demonstrated superior performance” [28] within. 

Conventionally, CNNs are most widely regarded for their contributions to image classification [42], 

semantic segmentation [43], and facial recognition [44] tasks [36, 41]. However, beyond the scope of 

“standard” computer vision problems, DCNNs are actively being purposed for RS applications [45, 46, 

47] also, due to their “effectiveness and appeal” [48] in a rising number of works7. This capability is 

mostly fulfilled by the ability of DNNs to learn “very complex non-linear relationships” [49], that when 

amalgamated with CNN architectures, can utilise the “high-order features of images” to construct HR 

renditions of LR counterparts, and ultimately “improve the performance of SR”. Hence why learning-

based methods have been used in image SR (ISR), for “the last decade” [50]. 

 

 

 
 

Figure 6: Visualisation of the Very Deep Super-Resolution (VDSR) network architecture [51]. 

 

 
7 Which has been “very helpful” for addressing global monitoring missions, given the plethora of societal 

applications that exist. 
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  Expanding upon the architectural advancements of SR, DA is renowned to be one of the most 

“practical ways to enhance model performance” [52], without incurring additional computation cost in 

the predictive phase. Currently, it is deemed that a variety of DA methods [53, 54, 55] have been 

proposed for “high-level” [52] computer vision tasks8. Whereas for “low-level” [52] computer vision 

tasks, including SISR, the application of DA methods has been “scarcely investigated”. Such that only 

“simple geometric manipulations with traditional SR models and a very shallow learning-based model” 

have been studied at this time. Therefore, as DA is respected as an effective way to improve the 

performance of DL models [59], this study proposes to explore the application of geometric self-

ensemble [60], extended with a randomised, state-of-the-art translation scheme [61], in the predictive 

phase of a state-of-the-art DCNN model, purposed to the SR of multispectral satellite images. Notably, 

this study focuses on enhancing the spatial resolution of Sentinel-2 satellite [62] imagery, which is 

synthetically observed at lower evaluation scale(s) (80→40m), in correspondence with the capacity of 

the available hardware. 

 

 

1.1 Motivation 

 

  The European Space Agency (ESA) [63] is providing a wealth of research regarding Earth 

observation, to “new horizons” [41], through its Copernicus program [64] under Sentinel satellite 

missions [34, 36]. Each mission focuses on “different aspects” [41] of data extraction, through RS 

monitoring operations, which target the Earth’s atmospheric, oceanic, and geological conditions [65]. 

In consideration of the series of Sentinel satellites available, this paper specifically focuses upon the 

Sentinel-2 (S2) mission (see Figure 7). As a supporter of “new generation” [19] satellite multispectral 

sensors, S2 is dedicated to the acquisition of “high-resolution optical imagery” [34], supporting multiple 

spectral bands that vary by spatial resolution [19]9 (see Table 1), and have high “radiometric and 

temporal resolution” [18] compared to other, similar instruments. The mission comprises a constellation 

of two identical, “polar-orbiting satellites” [62], namely S2-A and S2-B [18], that share the “same sun-

synchronous orbit, phased at 180 degrees to each other” [62], to thus decrease their “repeat and revisit 

periods” [18, 66] and capture multispectral images with “13 spectral bands every five days at the 

equator” [36]. Sentinel-2 significantly contributes to Copernicus themes akin to “climate change, land 

monitoring, emergency management, and security” [66]10. 

 

 

 

 

 
8 Concerned with object recognition [56], object tracking [57], and human pose estimation [58] focuses. 
9 Of 10m, 20m, and 60m ground-sampling distances. 
10 Such that the mission requirements of S2 are tailored to a choice of priority services, concerned with natural 

hazard management, European land use, European land cover state and changes, forest monitoring, food 

security, global change issues, and humanitarian aid crises [67]. 
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Figure 7: A Sentinel-2 mission infographic, highlighting 

the details and achievements of the mission after its first 

five years of operations [62]. 
 

 

Table 1: Tabularised wavelengths and bandwidths of the 

three spatial resolutions sponsored by the multispectral 

instruments of Sentinel-2A and Sentinel-2B [68]. 

 

 
 

 

 

  Despite its recency, S2 mission data has already been “extensively used” [18], thanks to the 

ESA’s “open data initiative” [34], that enables the data assembled by the S2 satellite pair to be “freely 

accessed”. Thus, allowing researchers and services to purpose such data for a dynamic range of 

applications. Also, given the quality and “world-wide coverage” [18] of the mission, assumes S2 to be 

an “important tool” for both present and future Earth observation operations. It is the importance, 

current applications, and the resulting relevance of S2 mission data, which motivates the work proposed, 

alongside other prior and current works alike [18]11. To note, the contributions of this work are also 

transferrable to SR studies surrounding other similarly operating satellite missions [69, 70], given the 

genericity it sponsors. 

 

 

1.2 Research Hypotheses 

 

 Following from the contextual background of the work proposed, this paper engages the 

following hypotheses: 

 

• Can state-of-the-art data augmentation techniques be applied to state-of-the-art deep 

learning super-resolution models, to further advance the spatial resolution exhibited by 

Sentinel-2 satellite imagery? 

• To what extent, if any, does a combinative use-case of state-of-the-art data augmentation 

techniques have on enhancing the spatial resolution of Sentinel-2 satellite imagery? 

• If a state-of-the-art deep learning model incorporates image granulation into its approach 

to super-resolution, does the sequence in which data augmentation techniques are applied 

and that the images are decomposed, impact the peak spatial resolution attainable by the 

super-resolution model? 

 

 

 
11 In knowing that not all spectral band images “are available at the same spatial resolution” [41]. 



16 

 

1.3 Research Objectives 

 

  Parallel to the hypotheses formulated for the work proposed, this paper contributes to the 

abovementioned study areas, as such: 

 

• Identify whether the low-resolution spectral band images issued by the Sentinel-2 mission 

can be spatially enhanced, via data augmentation techniques, for supporting more detailed 

and accurate information extraction. 

• Identify whether a combinative use-case of state-of-the-art data augmentation techniques, 

can further enhance the spatial resolution achieved by a state-or-the-art super-resolution 

model. 

• Identify an optimal configuration for the elected data augmentation techniques, suited to 

attaining peak spatial detailing of the spectral images resolved by the super-resolution model 

purposed. 

 

 

1.4 Thesis Structure 

 

  The proceeding chapters of this paper are organised as follows. In Chapter 2, the backgrounding 

focuses of the study are explained and further explored, with developments led into DL, SR, and DA 

settings. Therein, also reviews the innovative and state-of-the-art contributions to the relevant fields. 

Then, Chapter 3 presents the proposal put forth for the study, in greater detail, and the approach devised 

for the study’s undertaking is also identified and justified. Chapter 4 then focuses upon the 

implementation and appliance of DA techniques, for a state-of-the-art deep learning model that is 

identified in the preceding section. Thereafter, Chapter 5 elucidates the numerical findings of the study, 

and derives the implications of applying DA techniques to DCNN models, tailored to the enhancement 

of LR satellite imagery. Supplementary to the prior evaluation, Chapter 6 encapsulates all concluding 

discussions regarding the discoveries and limiting aspects of the study, as well as prospects for further 

investigation. Lastly, Chapter 7 consults the adherence demonstrated towards the study’s progression, 

particularly in respect of the approach to software development. Where rationale is provided for any 

design and implementation challenge encountered, alongside aberrations from the initial proposal. 

  

 

Chapter 2 | Related Research 
 

2.1 Background 

 

 In this section, the backgrounding focuses of the study are clarified and explored further, to 

provide a supplementary understanding of the notions employed by the work proposed, foregoing the 

literature review. 

 

 

2.1.1 Remote Sensing 

 

 Generically, RS can be characterised as the process of “acquiring information about an object, 

area or phenomenon from a distance” [71], as opposed to being in “direct physical contact” [72, 73] 
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with it. However, more relevant to the study in question, RS typically refers to the acquisition of 

information regarding the conditions of the “Earth’s surface (land and ocean), and atmosphere” [74], 

via sensors onboard “airborne or space-borne platforms”, like that of satellite technologies. In providing 

a “wealth of data about Earth systems” [75], information attainment is achieved by “detecting and 

recording” [73] the “reflected or emitted electromagnetic energy” (see Figure 8) of a targeted surface 

area, in the field-of-view (FOV) of “one or multiple remote sensing instruments” [72]. Electromagnetic 

radiation is normally applicated as an “information carrier in RS” [74], given its properties, that enable 

it to propagate information concerning the distance between an instrument and a phenomenon, as well 

as the direction, intensity, wavelength, and polarisation of the radiation [72]. Collectively, these 

measurements can offer “positional information” of phenomena and indications as to identifying the 

properties of Earth’s “surface materials”. 

 

 

 
 

Figure 8: Visualisation of the electromagnetic spectrum and its various domains, featuring depictions of observation satellites 

at their respective detection ranges in the spectrum. The abscissa outlines the several modes of reference, given as wavelength 

(m), energy (eV), and frequency (𝑠−1) [76]. 

 

 

  The interaction between a sensing instrument and the Earth’s surface can be distinguished by 

two traditional modes of operation, namely active and passive [71, 72, 74] (see Figure 9), which differ 

in the “source of the energy from which information is gathered” [71]. Simply, active sensors generate 

their own source of energy to “illuminate objects” [72] on Earth’s surface, whereas passive sensors 

utilise ambient energy such as the solar radiation sourced from the Sun, to “illuminate Earth’s surface”. 

For many of Earth’s observation satellites12, their onboard sensor instruments operate passively [72], 

which is also the common operating mode for Sentinel-2’s MSI [81], in which collects the “sunlight 

reflected from the Earth”. 

 

 

 
12 Such as Landsat [77], SPOT [78], GeoEye [79], and WorldView [80]. 
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Figure 9: A satellite sensor instrument infographic, highlighting the distinction between passive and active sensor observations 

[82]. 

 

 

2.1.2 Multispectral Imagery 

 

  The anthology of information over a “larger number of wavelength bands” [83]13, is referred to 

as “multispectral or hyperspectral data” (see Figure 10). Optical imaging systems typically utilise the 

“visible, near-infrared, and shortwave infrared spectrums” [72] (see Figure 8) to generate imagery from 

the aforementioned data types and others alike, including “panchromatic” representations. These 

imaging systems are commonly onboard many of Earth’s contemporary observation satellites [84], such 

as Landsat [77], WorldView [80], and this study’s focus, Sentinel-2 [81]14. This technology is not new-

found however, with the first multispectral satellite, Landsat-1, being launched in 1997 with “four 

spectral bands” [72].  

 

 

 
13 Otherwise known as spectral bands. 
14 Given that each satellite operates with at least one MSI. 
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Figure 10: Visualisation of multispectral and hyperspectral imaging data, depicted as comparable image stacks, in which 

each's images are taken in several and many distinct spectra [85]. 

 

 

  Simply, a multispectral image can be characterised as an assembly of “grey-scale images” [86], 

where each of the images corresponds to a “specific wavelength or wavelength band” in the 

electromagnetic spectrum. Such that every spectral band comprising the composite can be displayed 

“one band at a time”, as a grey-scale image, or combinatorically as a “colour composite image”. The 

resulting rendition can therefore be understood as a “multilayer image” [72], comprised of both the 

intensity and spectral (colour) information of the “targets being observed”15. Unlike a conventional 

RGB-colour composite image, the wavelength range of spectral bands can be “extended beyond” [86] 

the visible spectrum for multispectral images, from Ultra-Violet (UV) to Near Infra-Red (NIR) 

wavelength ranges, thus allowing “more information” to be propagated in comparison [87]. With 

respect to Earth observation missions, by manipulating the operational wavelengths of a given MSI, it 

is possible to “reveal features not otherwise easily discernible” [88] and provide images with “much 

higher spatial resolution” [89] than their RGB and hyperspectral counterparts. 

 

 

2.1.2 Deep Learning 

 

 Deep learning is recognised as being a “new research direction” [33] in the field of machine 

learning (ML), which as a subfield, subgroup, and branch of the domain [90, 91, 35], attempts to learn 

“high-level abstractions in data” [90] through the adoption of “hierarchical structures” [92, 90], namely 

Artificial Neural Networks (ANNs). Being revolved around the ANN computing paradigm, DL is 

subsequently inspired by the “functioning of the human brain” [93]. Where like the human brain, DL is 

orchestrated by a series of “computing cells or neurons” that separately perform a “simple operation”, 

and collectively “interact with each other” to resolve to a verdict or decision. As DL algorithms focus 

on “learning data representations” [94], as opposed to being purposed as “task-specific algorithms”, 

feature hierarchies of datasets can be learned; with features from “higher levels” of a given hierarchy 

being formed by the “composition of lower-level features”. By high-level features, one refers to a 

 
15 Or area (FOV) respectively. 
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feature that “hierarchically depends on other features” [95]. When considering the imaging nature of 

this study, a hierarchy as such implies that a DL algorithm will “learn its own low-level representations” 

from a given image, and then be capable of constructing depictions that depend on said low-level 

representations; this process then recurs in succession through to the “higher levels”, or layers, of the 

network. Therefore, a DL class of algorithm or network can be characterised as a “cascade of multiple 

layers of nonlinear processing units” [94], or nodes (neurons), purposed to feature extraction and 

transformation. Where each “successive layer” in the network applies the output data computed by the 

prior layer, as its input data, for learning “multiple levels of representations” corresponding to the 

multiple “levels of abstraction” it is configured with. 

 

 

 
 

Figure 11: Visualisation of a generic deep convolutional neural network (DCNN) architecture, purposed for image or object 

recognition tasks. Therein, identifies the levels of feature extraction anticipated by a DCNN [96]. 

 

 

  Appearing as a new field of research in 2006 [97], DL was originally received as “hierarchical 

learning”, which anticipated many fields of research correlated with “pattern recognition” applications. 

Nowadays, DL is an “emerging approach” that has been “widely applied” to many traditional artificial 

intelligence (AI) domains16. Reportedly, there exists three significant reasons for why DL is now a 

“booming” [90] field of ML today, which are: the dramatically increased computational capability of 

central processing units (CPU’s) [93], the rising affordability of computing hardware for regular 

consumers, and the contributions that have led to advances in ML algorithms [93, 90], overtime. Such 

that there is now an “enormous number” [94] of research publications that have been submitted to the 

field of DL. Aligned with this study’s engagement, DCNNs specifically (see Figure 11), are actively 

being purposed for an array of RS applications [45, 46, 47] and have proven to enhance the performance 

of prior SR methods [50], given their capability to construct HR renditions of LR counterparts [49]. 

Said capability has led DL to demonstrate “prominent superiority” [35] over other ML algorithms, in 

various other research domains and application areas also. 

  

 

 
16 Such as natural language processing [98], transfer learning [99], semantic parsing [100], and this study’s 

domain focus of computer vision. 
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2.1.4 Super-Resolution 

 

  Given the widespread availability of “high resolution displays” [101] and imaging instruments 

that still offer limited spatial resolutions17, SR has recently received “substantial attention from within 

the computer vision research community” [102, 103]. Such that the subsequent, “rapid advancements” 

[101] of DL frameworks purposed to image processing applications, has enabled the procurement of 

“impressive results” in the SISR domain. Where DL frameworks have exhibited the capability of 

learning the mapping estimate of a HR image, from its LR counterpart. Which as previously 

acknowledged, is possible with DNN’s, knowing that they are “able to learn abstract feature 

representations in the input image” that permit some degree of “disambiguation of the fine details” in 

the HR output. Thereby, in the field of SISR, an “end-to-end-mapping” [18] is typically learned and 

addressed in a “fully supervised manner” [101]18, via LR-HR image pairs, which is a “more powerful” 

[102] approach to SR led by learning or example-based methods [18, 33]. Where a DNN, specifically 

a DCNN [32], is deployed and purposed as an image “upscaling function” [101]19. Expanding upon the 

definition provided for SR methods prior, one should acknowledge SISR as an “undetermined inverse 

problem” [28, 102], that entails the estimation or recovery of a HR image from a LR observation of the 

same scene; usually in cooperation with “digital image processing and ML techniques” [51]. In which 

the aforesaid mapping between low- and high-resolution images is learned, to recover (estimate) the 

“missing high frequency details” [29] of the LR image. Such that the presence of “high frequency 

components” [104] in a given image, increases, whereas the presence of “degradations” like artifacts20 

[35], decreases (see Figure 12). 

 

 

 
17 Due to “several theoretical and practical restrictions” [28]. 
18 Otherwise regarded as supervised-learning. 
19 Generally, approaches to SISR can be classified into three classes, namely: interpolation-based methods, 

reconstruction-based methods, and learning-based methods [33, 51] 
20 Artifacts and other degradations alike, are commonly caused by the imaging process of the respective 

instrument, to note. 
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Figure 12: Visualisation of the Deep Sentinel-2 (DSen2) super-resolution model, performing 2× up-sampling on real Sentinel-

2 data. From left to right: true scene RGB in 10m ground sampling distance (GSD) (spectral bands B2, B3, B4), native 20m 

GSD spectral bands, and the super-resolved 20m GSD spectral bands (B12, B8a, and B5 as RGB) up-sampled to 10m GSD 

[18]. 

 

 

 However, as SISR is an “ill-posed problem” [102, 103, 105], existing SR technologies still, 

cannot always yield “satisfactory reconstruction results”, which is why the research area remains to be 

“notoriously challenging” [35, 102] and of significant interest to both academia and industry [103]. 

Especially as the quality of a reconstructed SR image also “greatly affects the accuracy of other 

computer vision tasks” and studies21. Nonetheless, learning-based methods have “emerged as an 

efficient solution” [29] to the spatial resolution enhancement problem [106], given their “strong 

capacity” [35] in extracting high-level abstractions from images, that “bridge the LR and HR space”. 

Where “several quintessential methods” [28] have failed, due to two recognised drawbacks: the first of 

two being the “unclear definition of the mapping” [35] operation between the LR and HR spaces, and 

the other being the “inefficiency of establishing a complex high-dimensional mapping” operation, given 

the vastness of the data being handled22. The first effort contributed to the field of SR can be traced 

back to as early as 1984 [107], where the term ‘super-resolution’ was then later coined in 1990 [108]. 

Today, since the advent of SRCNN [109] in 2014, SISR has begun to “usher in its pioneering work in 

the field of in-depth learning” and has made substantial improvements both quantitatively and 

qualitatively. 

  

 
21 Concerning image classification, image segmentation, object detection, and this study’s focus of Earth 

observation monitoring [41]. 
22 Examples of said methods are non-uniform interpolation, frequency domain, and machine learning-based 

reconstruction approaches [28]. 
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2.1.5 Data Augmentation 

 

 Commonly, DA targets the enlargement of a given dataset “to address gaps in data 

representation” [110] and to “minimise the problem of overfitting” [111]; where DA can be used to 

improve “model performance and reduce generalisation error” [112], through enhancing the “ability of 

the model to generalise”. Typically, relatively small datasets are enlarged by “applying transformations 

to its samples to create new ones” [113], which allows for a broader variation of “image contexts to 

train the model” with23. As an example of instance-based augmentation [114], the transformations 

typically concern geometric, colouring, noise injection, deformation, translation, brightness, and 

smoothing operations in conventional SR tasks [115]; with flipping, cropping, rotating, and scaling 

operations [113] being the most common. Meanwhile, many other strategies for enhancing a models 

generalisation capability focus on the “model’s architecture itself”, which has led to the existence of 

more complex architectures24. 

 

 

 
 
Figure 13: Depiction of a large collection of data augmentation (DA) techniques supported by ‘DeepAugment’; a DA solution, 

purposed to machine learning (ML) applications [119]. 

 

 

  However, DA can also be applied in the predictive phase of a given model, hence Test-Time 

Augmentation (TTA), for obtaining “greater robustness, improved accuracy, or estimates of 

uncertainty” [120]. In which, TTA entails “pooling predictions” from several transformed versions of 

a given input image, in the obtainment of a “smoothed prediction”, representing a de-noised output. 

Given that TTA is “easy to use” and “simple to put into practise”, it is regarded as one of the most 

“practical ways to enhance model performance” [52], hence its popularity in high-level vision tasks [56, 

57, 58]. As well, TTA25 has been present for a “long time” in the field of DL, such that in 2012, a 

standard “evaluation protocol” [122] was derived from averaging the predictions (ensemble) of an 

“image classification model over random crops and flips of test data”. Though, transforming data before 

 
23 This helps to improve a model’s “invariance to spatial transformations” in the predictive phase. 
24 Such as: AlexNet [116], VGG-16 [117], and ResNet [118], to name a few. 
25 Otherwise regarded as enhanced prediction [121]. 
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inference has “received less attention” [123] than enhancing the diversity of a training dataset, 

especially for low-level computer vision tasks. Given the SISR emphasis of the study, TTA can be 

characterised as a technique that utilises an existing network or model, to super-resolve a series of 

transformations of the same image, before each’s transformation can then be “undone” [41], to obtain 

an ensemble image representing the aggregate of all transformations, as the “final super-resolved 

image”. This technique aims to reduce the presence of “noise patterns and artifacts” [124] unresolved 

by a baseline model, through the “smoothening process” advocated by the ensemble of the 

transformations. Thus, maximising the “potential performance” [59] of a related model. 

 

 

2.2 Related Work 

 

 Enhancing the spatial resolution of RS multi-resolution images has been investigated and 

addressed for an array of image types and sensory instruments already26. As one of the most active areas 

of research since the “seminal work” [104] of [107] in 1984, many SR techniques have been proposed 

in the “last two decades” [104], as per [50, 132]; featuring approaches that have advanced from the 

“frequency domain to the spatial domain”, and from a “signal processing perspective to a machine 

learning perspective”. In the following passages, an overview of the techniques and innovations 

contributed to the SR domain are revealed, in the determination of the state-of-the-arts purposed to this 

study’s investigation. 

  

 

2.2.1 Classical Super-Resolution 

 

  Classical approaches to SR27 aim to generate “high-quality HR images” [133] from a given, 

single LR input image, through exploiting “certain image priors”. Each of which poses as information 

regarding the prior state of an image. Corresponding to the image priors known, classical approaches 

to SR can be categorised as prediction-based, patch-based, edge-based, and statistical-based methods 

[50, 133]. To note, classical SR methods are briefly reviewed to entertain the complete development 

progression of the SR domain. 

 

 

2.2.1.1 Prediction-Based Methods 

 

 The preliminary efforts in achieving SISR were “based on prediction” [50], where HR images 

are generated from LR images through “a predefined mathematical formula without training data” 

[133]. The first of such efforts was recorded in [134] and was based on Lanczos filtering, a “Fourier 

method of filtering digital data” via “sigma factors” [50]28, to smoothly interpolate data comprising a 

digital image. In later periods, a similar frequency-domain approach was introduced [107] and purposed 

to “image resampling” [50], which combined “multiple under-sampled images with sub-pixel 

displacements to improve the spatial resolution” [135]. Prior to this contribution, a cubic convolution 

algorithm [136] was also purposed for resampling image data, and the results demonstrated that the 

 
26 Such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [125, 126], Moderate 

Resolution Imaging Spectroradiometer (MODIS) [127, 128], Visible Infrared Imaging Radiometer Suite 

(VIIRS) [129, 130], and more recently, MSI’s [18, 131]. 
27 That are otherwise regarded as conventional methods [50]. 
28 Otherwise known as sigma-approximation. 
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predictive method was “more accurate than the nearest-neighbour algorithm and linear interpolation 

method” [107, 137]. However, despite being much more efficient, relative to “storage and computation 

time” [107], and accurate compared to the methods abovementioned, the algorithm was deemed 

performatively inferior to the cubic spline interpolation method [136]. Expanding upon the works of 

[107], which did not factor “blur in the imaging process” [50], the authors in [138] used “approximate 

knowledge of the imaging process”, to compute “relative displacements for image interpolation” [50] 

when a constant sampling rate was configured, to deblur a “single input image” [138]. Leading to the 

authors’ claim that SR “reduces to deblurring”, upon their iterative algorithm being applied to individual 

images without an “increasing sampling rate”. 

 

 

 
 
Figure 14: Depiction of interpolation-based approaches to super-resolution, with a smooth data (image) example [139].  

 

 

  Prediction-based methods including bicubic interpolation and non-uniform interpolation [140, 

141], are accepted to “estimate the intensity” [103] of a point or pixel in a digital image, using the 

information of “adjacent pixels”. Typically, interpolation-based methods entertain three algorithmic 

operations, namely registration, interpolation, and deblurring [51, 141, 142]. Although said methods are 

easily calculated, “very speedy, and straightforward” [103, 105], they are renowned to experience 

“accuracy shortcomings”, from the generation of “jagged artifacts” [103] and “excessive smoothing” 

of detail (see Figure 14).  

 

 

2.2.1.2 Patch-Based Methods 

 

 Patch-based approaches to SR29 were acknowledged for their “fast computation and outstanding 

performance” [35] offerings; considered as one of the “more powerful approaches” [102] to SR, patch-

based methods aim to establish a “complex mapping between low- and high-resolution image 

information” [102] from training examples and data30. Given a set of LR-HR training image pairs, a 

series of patches can be “cropped from the training images to learn mapping functions” [133]; many 

methods based on example-pair images depend on LR patches having a corresponding, HR counterpart 

 
29 Also referred to as learning- or example-based methods. 
30 Which typically anticipates the utilisation of ML algorithms [105]. 
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[102]. However, exemplar patches can be “generated from external datasets, the input image itself, or 

combined sources” [133]. 

 

 

 
 
Figure 15: Depiction of the Markov Random Field (MRF) network model. Where the low-resolution image patches at each 

node 𝑦𝑖, are the observed input. Whereas the high-resolution image patches at each node 𝑥𝑖, correspond to the quantity of 

closely related input patches to estimate any given high-resolution patch extraction choice [143]. 

 

 

  One of the earliest works, namely the Markov Random Field (MRF) approach [143], adopted 

“various patches within the training set” [50] as training patterns. Which enabled the generation of 

“detailed high-frequency images”, from the utilisation of texture information embedded in each of the 

extracted image patches (see Figure 15). Thereon, in the works of [144] the authors exploited similar 

“local geometry between LR and HR” [105] patches, for generating HR images derived from “local 

patch features” [50]. Established as Locally Linear Embedding (LLE) [144], their method was 

developed upon the assumption of the “closeness of complex constructions between LR and HR peers” 

[145]31. Differentiating from this proposal, in [147] the authors exploited “patch redundancies across 

scales within the image” [102] to approach SR, which anticipates the “reoccurrence of geometrically 

similar patches in natural images” [50], to identify the elitist pixel values. Meanwhile, in the preceding 

works of [148], the authors proposed hallucination algorithms32 that enable the local features within an 

LR image to be “recognised” and extracted, before being used to “map the HR image” [50]. 

 

 

2.2.1.3 Edge-Based Methods 

 

 Edge-based approaches to SR typically utilise “edge smoothness priors” [50] to up-sample LR 

images, which as “important primitive image structures” [133], pose a significant influence on the visual 

perception of image quality. Whereby, in [149] a generic image prior described as the “gradient profile 

prior” is used to smoothen the edges comprising an image, to “achieve super-resolution in natural 

images” [50]. In which both small- and large-scale detailing is “well recovered in the HR image” [149], 

and artifact generation is avoided by “working in the gradient domain” (see Figure 16). To reconstruct 

 
31 This method was particularly influential on the existence of the self-similarity paradigm [146]. 
32 Which they proceed to regard as “recognition-based reconstruction techniques”. 
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texture detailing of realistic perceptual qualities while “avoiding edge artifacts” [50], the authors of 

[150] blend an “edge-directed” [50] SR algorithm based upon a gradient profile prior [149], with 

learning-based techniques that provide the benefits of “detail synthesis”. This reports to obtain “good 

results”, both subjectively and quantitively. Advancing from this area of work, in [151] the authors 

utilise “filter banks” in the search for similar image patches, based on a “local self-similarity 

observation” [50] which performs fewer “nearest-patch computations” to synthesize an image. Given 

this relation, the proposed method is capable of reconstructing perceptually convincing edges, 

efficiently, whilst exhibiting a reduced number of artifacts like “jaggies and ringings” [151]. However, 

“fine-detailed clustered regions” of a given image are reportedly not reconstructed with a realistic 

appeal, and instead appear “somewhat faceted”. Thus, rendering the performance of the method, poor. 

Since image priors are “primarily learned” [133] from edge features, HR reconstructions typically 

exhibit “high-quality edges” and a limited number of artifacts. However, as discovered, edge priors are 

less successful for modelling “high-frequency structures” such as textures, where the results are 

seemingly less convincing. 

 

 

 
 

Figure 16: Visualisation of a high-resolution image reconstruction sequence. From left to right: a low-resolution image (using 

nearest neighbour interpolation) and gradient field of its up-sampled image (bicubic interpolation), the result of back-

projection and its gradient field, the result of the gradient profile prior method and its transformed gradient field, and the 

ground truth image and its gradient field [149]. 

 

 

2.2.1.4 Statistical-Based Methods 

 

  Statistical-based methods that exploited the features and properties of images as priors, to 

predict, restore, or recover HR images from LR counterparts [133], were also proposed as classical SR 

approaches. In [152] the authors exploit the “sparsity property of large gradients in generic images” 

[133], to reduce the “time complexity of training and testing” [152] for Kernel Ridge Regression (KRR) 

[153]. In which the authors propose a “sparse solution” [152] that unites the notions of Kernel Matching 

Pursuit (KMP) [154] and gradient descent [155], to enable KRR to learn a “mapping function from the 

image example pairs” [50], more efficiently. Which then as a “regularised solution” [152], allowed 

KRR to also yield an advanced generalisation capability. Continuing in the direction of regularisation, 

the authors of [156] combine “adaptive regularisation and learning-based pair matching” techniques, to 

restore HR web-based images and video sequences from “compressed LR measurements with different 
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content and degradation levels”. Which demonstrated the ability to eliminate “compressed artifacts” 

whilst preserving and enhancing “high-frequency details”, post-compression; thus, increasing the 

“resolution and perceptual quality” of images and videos alike. Meanwhile, in the works of [157] and 

[158] the authors propose “sparse signal representation” methods to perform ISR, that complies with 

the concepts surrounding compressed sensing [159]. This demonstrated the “effectiveness of sparsity 

as a prior” for patch-based SR, in focus of both generic and facially-derived imagery (see Figure 17). 

To note, both methods focus on recovering the SR “version of a given low-resolution image” [157, 

158], through their dependency on “patches from example images”. Differentiating between each’s 

contribution to the domain, however, the authors of [157] work directly with the LR training patches 

and “their features”, whereas the authors of [158] instead, learn a “compact representation” for the 

image patch pairs to acquire the “co-occurrence prior”, which enables the algorithm to operate more 

quickly by comparison.  

 

 

 
 
Figure 17: Visualisation of two example images, a flower, and a girl, magnified by a scale factor of three. From left to right: 

the input low-resolution image, the result of bicubic interpolation, the result of neighbour embedding, the result of the sparse 

representation method, and the ground truth image [157]. 

 

 

2.2.2 Panchromatic Sharpening Super-Resolution 

 

 Panchromatic sharpening or “pan-sharpening” [160] can simply be defined as a “pixel-level 

fusion” [161] or SR technique, that is used to enhance the “spatial resolution” of multispectral (MS) 

images [162]. Where it is possible for MS images to be “sharpened” [163] by a higher-resolution PAN 

(single spectral band) image, in classical pan-sharpening, to enhance both “spatial and spectral 

resolutions” of the containing image data [164]. This procedure can otherwise be characterised as the 

“fusion of panchromatic and multispectral images” [165], where pan-sharpening techniques govern the 

transfer [166] or blend [18] of detail, from a HR panchromatic band to a series of LR bands (see Figure 

18). As the authors of [167] report, pan-sharpening techniques pose two advantages to ISR, which are 

their “efficiency and applicability” in resolving HR renders of LR, MS images; hence why the 

methodology has been regarded as one possible option to “achieve a superior spatial resolution” [17]. 
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Figure 18: Depiction of the image fusion process entailed in the obtainment of a pansharpened image. Therein, demonstrates 

the combination or fusion of a low-resolution multispectral image with a high-resolution panchromatic image, to obtain one 

high-resolution multispectral image [168]. 

 

 

  Relevant to this study’s investigation, “many” [167] Earth observation satellites natively record 

panchromatic data, as is entertained by the Landsat [77], SPOT [78], and WorldView [80] series of 

satellites. Which naturally render pan-sharpening techniques “feasible” [17] for MS ISR. However, as 

Sentinel-2 [81] does not operate with an onboard panchromatic instrument, other solutions are “needed” 

[167] instead. Nonetheless, as “a lot of pan-sharpening algorithms” [17] have been proposed and 

developed for MS and HS images in the “last decades”, there exists such solutions to alleviate this 

shortfall. Given the quantity of algorithms available, it is widely accepted that pan-sharpening methods 

can be classified as either component substitution (CS) or multi-resolution analysis (MRA) methods 

[164]. For the fulfilment of this study, these methods alongside those explicitly purposed for the 

Sentinel-2 mission are explored, where the latter is classified separately from CS and MRA methods to 

warrant clarity. 

 

 

2.2.2.1 Component Substitution Methods 

 

  CS is renowned as the “most classical” [164] approach to pan-sharpening, that concerns the 

“projection” [169] or transformation of MS images into a “different colour space” [164], and 

substitution of one of the components in the LR, MS image, with one from the HR PAN image. This 

assumes that transformation separates the “spatial structure from the spectral information into different 

components” [169]. Where the MS image, once transformed, can be “enhanced by replacing the 

component containing the spatial structure” with the PAN images. Thereon, after “up-sampling” the 

image’s other components, the MS image can then be “back-transformed” [164] to its original colour 

space; thus, achieving SR. Given the nature of this approach, it is understood that the “spectral fidelity” 

achieved by a pan-sharpened MS image is “closely related” to the association between the PAN image 
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and the replaced component; where the “greater the correlation”, the “lower the distortion” visible in 

the pan-sharpened image is. 

 

 

 
 

Figure 19: Visualisation of an intensity-hue-saturation (HIS) pan-sharpening method, replacing the intensity (I) component 

of the low-resolution multispectral image, with the PAN image [170]. 

 

 

  Proposed by the authors of [171] was a “fast and simple transformation” based upon intensity-

hue-saturation (IHS) image fusion principles. That as an early contribution to the field, was only 

purposed for “three bands imagery” [164]. Extending from this work, the authors of [172] then proposed 

a “generalised IHS” [164] method, which incorporated the support for NIR spectral bands, in addition 

to the PAN and RGB bands supported by IKONOS satellite imaging [173]. Advancing from these 

preliminary works, in [174] an IHS-based pan-sharpening approach to “spectral fidelity improvement” 

[164] was proposed, implementing “discrete ripplet transform” and compressed sensing principles, to 

reconstruct the “intensity component” [174] of the MS image (see Figure 19) and acquire “multi-scale 

sub-images” from the PAN image. As the authors report, this method “outperforms” five competing, 

state-of-the-art methods on three satellite derived imaging datasets; such that it overcomes spectral 

distortion whilst improving the spatial resolution of MS images, “significantly”. Differing by their 

approach to colour space transformation, many other “popular” pan-sharpening approaches have been 

submitted as CS methods as well33. However, due to the lack of “unique transforms” [169] for obtaining 

the optimum component for PAN “substitution”, methods focused around its “adaptive estimation”, 

namely adaptive CS [178], have since been proposed to alleviate the presence of “massive spectral 

distortions” [164] in the results. Even so, CS-based methods consistently “lead to unsatisfied spectral 

fidelity”, which renders them sub-optimal for ISR. 

 

 

2.2.2.2 Multi-Resolution Analysis Methods 

 

  Posed as the second class of pan-sharpening methods, MRA seeks to extract the “high 

frequency details” [164] from a PAN image, before ‘injecting’ them into the corresponding “up-

sampled MS image”. Comparatively, approaches of this nature are provably “less susceptible to spectral 

 
33 Including principal component analysis (PCA) [175], Gram-Schmidt (GS) [176], and Brovey transform (BT) 

[177], to name a few. 
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distortions” than their CS-based counterparts, which determines them to be more optimal for ISR. 

Derived from the ‘Amélioration de la Résolution Spatiale par Injection de Structures’ (ARSIS) [179] 

concept, MRA methods are respected as data “preservation” [169] techniques for LR, MS images, that 

through “spatial filtering”, can transfer the “information obtained from the PAN image” to acquire an 

improved, pan-sharpened version.  

 

 

 
 

Figure 20: Depiction of a full-scale spatial enhancement of the ‘QuickBird’ image, by a series of image fusion algorithms. 

Annotated: (a) the original multispectral image bands resampled to the scale of the PAN image, (b) the product of curvelet 

transform fusion, (c) the product of Gram-Schmidt fusion, and (d) the product of à trous wavelet transform with a spectral 

distortion minimising model [182]. 

 

 

  As a preliminary contribution to the MRA class of methods, in [179] a technique namely à trous 

wavelet transform (ATWT) was proposed, where a PAN image is firstly “decomposed into some 

wavelet planes” [164], before the high frequency details are then “extracted and injected” into the 

intensity or luminance component of the MS image. As the authors conclude, this concept led to the 

generation of “high spatial resolution multispectral images” [179], which align closely with images that 

the sensor itself would observe with the highest resolution. Thereon, in [180] a “novel” [164] method 

that could combine and preserve the “spectral-spatial information” of PAN and MS images well, was 

proposed, from the combinative use of “multi-resolution wavelet decomposition and the IHS transform” 

[180]. However, this method and others alike it [181] were acknowledged dependant on “redundant 

representations” [164], which disappointed MRA-based methods, as “massive spatial distortions” 

would be produced, depreciating the perceptual quality of pan-sharpened images. Considering this 

defect, an “improved method” based on non-separable or “curvelet transforms” (CT) [182] was then 

later proposed, for extracting spatial details with a “directional property” [164]. Which led to the 
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attainment of “superior spatial enhancement” (see Figure 20). Beyond this approach, many other MRA-

based methods were proposed for “reducing distortions and artifacts”, as in [183], and achieving high 

accuracy “image registration” [164], as in [184]. 

 

 

2.2.2.3 Sentinel-2 Adapted Methods 

 

  As Sentinel-2 does not have a “panchromatic band that covers most of the sensors spectral 

range” [18], it is deemed “necessary” [166] to purpose S2’s HR spectral bands for “generating super-

resolution versions” of its LR counterparts; thus, fabricating a series of panchromatic bands. Which is 

notably a complex procedure, as is presented by many of the popular works explored in [185]. 

Entertained by this comparative study, one can understand that many “popular pan-sharpening methods 

have still been applied to S2 data” [166], and that there exists methods that have been “developed 

specifically for the super-resolution of S2 images”. 

 

 

 
 

Figure 21: Depiction of the area-to-point regression kriging (ARTPK) results, for a studied Sentinel-2 image (spectral bands 

B12, B8a, and B5 as RGB) based in three sub-areas of Verona, respectively. Where: (a) – (c) represents the 20m GSD data, 

and (d) – (f) represents the 10m GSD (downscaled 20m GSD) results [187]. 

 

 

  In another comparative study [186], the authors evaluate the performance of “21 different 

fusion algorithms” across three frameworks, when spatially enhancing the “narrow 20m VNIR  

and SWIR bands of the Sentinel-2 satellite”. For which, the authors use “heuristic” [18] methods to 

“synthesize” the panchromatic data from the 10m GSD, HR spectral bands. Despite the “spectral 

discrepancies” [186] encountered, the authors claim that “most” pan-sharpening methods were able to 

“spatially enhance the lower resolution data”. Meanwhile, in [187] the authors report some of the “best 

results in the literature” [18], for their proposed, Area-To-Point Regression Kriging (ARTPK) method 

(see Figure 21). Which in essence, performs “regression analysis” between spectral bands at a lower 

resolution, before applying the “estimated regression coefficients” to the HR input; this method extends 
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the CS and MRA classes of pan-sharpening, in use of a band synthesis and band selection 

scheme [187]. Where in [188] the authors propose a series of amendments to “optimise” [18] the 

schemes aforesaid, that subsequently established compatibility with CS and MRA-based methods. Prior 

to this contribution, the performance of “four popular” [18] pan-sharpening methods were evaluated in 

focus of open water body monitoring [189], in attempt to sharpen the B11 SWIR band of the S2 dataset 

and acquire a HR normalised differential water index (NDWI) image. Further in this direction, in [190] 

five unique pan-sharpening methods were then utilised for enhancing the “resolution of the 20m bands” 

[18], to investigate the land-cover classification potential of pansharpened images, compared to the 

products of “naive neighbour up-sampling” methods. As the authors report, the former dramatically 

“improved the overall classification accuracy” [190]. 

 

 

2.2.3 Model-Based Super-Resolution 

 

 Observational approaches to SR “explicitly define a model of image degradation to be 

reversed” [166], relative to the targeted system for image acquisition. Where the relationship between 

an original HR image and observed LR image can be established [142], and then used to describe and 

negate the “assumed blurring, down-sampling, and noise processes” [18] entertained by the LR 

observation. Given this relation, model-based methods approach SR as an “inverse imaging problem”, 

for which many “variational” [166], Bayesian inference frameworks [18] have been proposed to 

address. As the nature of this problem is ill-posed, methods typically adopt “explicit regularisers” to 

regulate image priors; enabling HR renders to be resolved by “minimising the residual error” of a given 

model, or respectively, the “negative log-likelihood” of all spectral band images, “simultaneously”.  
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Figure 22: Depiction of the Superresolution MUltiband multireSolution Hierarchical (SMUSH) method results, obtained for 

simulated Sentinel-2 images. Where: (a) - (c) represents a false colour composite image, comprised of spectral bands B5, B6, 

and B7(20m GSD), and (d) - (f) represents a false colour composite image, comprised of spectral bands B1 and B9 (60m GSD) 

[193]. 

 

 

  In the work of [191] the author introduced a “resolution enhancement” method34 purposed for 

MS and HS images, capable of separating the “band-dependant spectral information” (reflectance data) 

of Sentinel-2 imagery, from the information branded common between all bands35. In which the model 

can be applied to super-resolve and “unmix” the LR spectral bands, to the extent that the bands are 

“consistent with those scene elements” [18], whilst preserving their “reflectance” [191] values and “sub-

pixel details”. Meanwhile, in [192] the authors adopt an observation model, namely SupReME, 

equipped with “per-band point spread functions” (PSF’s) [18], to each cater for “blur and down-

sampling per band” [192]; while a spatial regulariser “learns the discontinuities” from the HR bands 

and “transfers” the detail to the other, lower resolution bands. Which consists of two operations: 

dimensionality reduction, that infers the “correlation between the bands” [18], and a “contrast-

dependant penalisation” of quadratic gradients, used to reduce smoothing across the discontinuities 

learned from the HR bands [192]. Similarly, the work of [193] also introduced an observation model36 

closely aligned with the SupReME model, except that it utilises an “edge preserving regulariser and a 

patch-based plug-and play prior”, to promote the acquisition of self-similar images. The method 

entertains a hierarchical process, which sharpens the “medium resolution bands” (20m GSD), before 

 
34 Namely Superres. 
35 Namely the “geometry of scene elements”. 
36 Namely SMUSH. 



35 

 

then the “coarse resolution” bands (60m GSD) of a given S2 image; reportedly, the method can 

accurately increase the spatial resolution of the lower spectral bands, “without introducing significant 

distortion and artifacts” (see Figure 22). Beyond the scope of the methods explored, exists other state-

of-the-art Sentinel-2 frameworks37; all which share performance enhancements over classical and other 

pan-sharpening approaches to SR. 

 

 

2.2.4 Deep Learning Super-Resolution 

 

 Various DL methods have been proposed and “developed over the years” [50] to combat the 

SR problem38; typically, approaches to SR have confronted the “prediction” [18] of HR images as a 

“supervised machine learning problem”. Where unlike the catalogue of techniques explored prior, the 

relation or mapping between the LR input to the HR output is not “explicitly specified”, but rather 

“learned” from exemplar data. Posed as learning-based methods39, DL models are trained using both 

“low- and high-resolution images” [50]40, and have received substantial focus because of their “fast 

computation and outstanding performance” [105] offerings41. Providing that they can capture “more 

complex and general relations” [18] of the features that comprise image data; despite requiring “massive 

amounts of training data, and large computational resources”. Following the success of [116], CNN 

architectures pose to be the state-of-the-art for “many computer vision problems” [102]42, which 

rationalises why the following passages explore CNN contributions to SR, and their deeper, recent 

advances. 

 

 

2.2.4.1 Convolutional Neural Network Super-Resolution 

 

  Historically, the first CNN43 was proposed in 1998 [197] for the “classification of handwritten 

digit recognition” [36], using the profoundly recognised MNIST dataset [198]. Following its debut, the 

“power of CNNs” was seemingly ignored and neglected by imaging applications until the advent of 

AlexNet [116]44, in 2012. Which reported a “10% increase in accuracy” [36] over previous non-CNN-

based models, for image classification tasks. Ever since, a CNNs purpose has been “extended to a series 

of problems in computer vision” [34], including SISR, where they have reportedly “excelled” within.  

 

 

 
37 Namely S2Sharp [194], MuSA [195], and SSSS [196]. 
38 And more so in focus of the SISR problem. 
39 Otherwise regarded as example-based methods. 
40 Referred to as LR-HR pairs. 
41 Where DL-based SISR methods have demonstrated superiority in the domain. 
42 Including SISR. 
43 Namely LeNet-5, a five-layer CNN. 
44 An eight-layer CNN. 
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Figure 23: Depiction of the super-resolved results for a Sentinel-2 RGB composite. Comparing the products of the bicubic-

interpolation model (as the baseline model) and the multispectral instrument Super-Resolution Convolutional Neural Network 

(msiSRCNN) model [199]. 

 

 

  Proposed in [109] was the first SR technology to adopt a neural network (NN), namely SRCNN, 

which posed as a shallow “three-layer CNN” [33] that bicubically-interpolated an image before 

performing patch extraction and representation, non-linear mapping, and patch-wise reconstruction 

operations, to learn an end-to-end mapping between LR-HR pairs. Given the methods ability to “obtain 

higher PSNR” [33]45, SRCNN was then later applied to satellite imaging in 2016 [199] with “no changes 

to the networks architecture” [32]46. Wherein, the model was instead “re-trained using Sentinel-2 

images” as described in [109], for achieving a performance superior to the classical, bicubic-

interpolation model47 (see Figure 23). Thus, proving that CNN-based SR methods were “equally 

applicable to satellite imagery”. In the same year, the authors of the SRCNN then proposed a new 

variant, namely “Fast SRCNN” (FSRCNN) [200], to achieve “fast training” [201] whilst maintaining 

the performance of its predecessor model; this was achieved via substituting the “up-sampling step” 

[32] with a deconvolution layer at the end of the network. Thereby enabling a LR image to be “inputted 

directly” [202]. Another variant of SRCNN, namely Multi-Channel SRCNN (MC-SRCNN), was also 

proposed in 2016 [203]. Which differentiates from SRCNN by accepting “multi-channel input images” 

[32], as opposed to one single-channel input; the method creates multi-channel input by applying a 

range of “interpolation algorithms and sharpening filters”, during its data pre-processing phase. As the 

authors reported, multi-channel inputs enabled the model to “reconstruct more proper HR images” 

[203], that improved upon SRCNN “marginally as a result” [32].  

 

 

2.2.4.2 Deep Convolutional Neural Network Super-Resolution 

 

  Since SRCNN, the importance of SR technology “cooperating with in-depth learning” [33] has 

been realised, upon establishing that “deeper and more complex architectures can lead to better results” 

[36]. Providing the theoretical works of [204], the authors identify this relation by increasing the “depth 

or width” [35] of a DNN’s “solution space” and its layers within; allowing for more hierarchical 

representations to be obtained, “effectively”, alongside a generalisation capability beyond “shallow 

 
45 The acronym of a widely used image quality metric: Peak signal-to-noise ratio. 
46 The SRCNN model then inherits the name msiSRCNN. 
47 This model was purposed as the baseline method of the study. 
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models” [204]. Irrespective of their “training difficulties”, recent DL-based applications have 

showcased the “great power of very deep” NNs. 

 

 

 
 

Figure 24: Visualisation of the residual block compositions for the (a) ResNet, (b) SRResNet, and (c) EDSR networks [211]. 

 

 

  As the “first very deep model” [35] purposed to combating the SISR problem, VDSR in [205] 

was introduced as a ‘residual network’, which was used to train “much deeper network architectures” 

[59] in modelling the difference between “HR and LR images” [205] and achieving “superior 

performance” [59] over SRCNN. Inspired by VGG-net [206], VDSR’s “20-layers” [36] were found 

“necessary for good performance” [32], in enabling the model to converge “much faster” than SRCNN 

and to be applied to “multiple scales” of images, with the help of “residual-learning” [205] concepts. 

Branching from this work, in [207] the authors “retrain” [166] VDSR48 to perform well with Sentinel-

2 data, which returns “promising results”, respective of improving the spatial resolution of RS images 

“per a factor of four” [207]. Meanwhile, in [208] a very deep encoder-decoder network, namely RED-

Net, was then proposed that too “achieves better performance than state-of-the-art methods on image 

denoising” and SR, with the use of “symmetric skip-connections”. Which amalgamate the encoder and 

decoder sections of the network to help with “recovering clean images”, whilst obtaining “performance 

gains when the network goes deeper”49. It is recognised by several other works for models based on 

skip-connections to have achieved “state-of-the-art performance in many tasks” [35], also. Among 

them, ResNet [209] is perhaps the most “representative model” [35]. Advancing from this work, in 

[210] the authors propose a “major architectural” [32] development, namely SRGAN50, which poses as 

the first attempt to apply Generative Adversarial Network’s (GANs) to the SR problem domain [33]. 

As such, SRGAN utilises “perceptual loss and adversarial loss” to generate images that appeal more 

“realistic and natural”. Where the former, as a “loss function” [210], is purposed for assessing a solution 

with “respect to perceptually relevant characteristics”, in generating a convincing SRResNet. Whereas 

the latter, is used within the “discriminator network” to differentiate between the super-resolved and 

original, photo-realistic images; the former continues to “carry out training” [33] until the discriminator 

 
48 In becoming the Remote Sensing Very Deep Super-Resolution (RS-VDSR) network. 
49 The deeper, RED-Net-30 network is reportedly the best overall method, performatively. 
50 Which is the acronym for Super-Resolution Generative Adversarial Network. 
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can be “deceived” by the super-resolved renditions. As the authors report, for large upscaling factors, 

SRGAN by a “considerable margin” [210], generates more “photo-realistic images” than other state-

of-the-art methods. Of such methods is SRResNet, which the authors also propose as an independent 

network, composed up of “16 residual units” [35]51 or blocks52 “optimised for MSE” [210]53; in each 

ResBlock, SRResNet adopts batch normalisation (BN) to “stabilise the training process” [35]. Relative 

to the quantitative findings of the study, SRResNet “sets a new state-of-the-art” [210]. However, depite 

being “very successful” [35], SRResNet faced architectural deficiencies concerning its feature of 

“redundant modules”, which declared it to be “suboptimal” [210] for low-level vision tasks54. In resolve 

of this deficiency, the work of [211] then proposed to optimise the model by “analysing and removing 

unnecessary modules” from its architecture, and in doing so, the authors established EDSR55. Where all 

BN operations are removed from each residual block [35], to allow information to be affected by fewer 

“changes” [36], and the networks loss function is altered from the “L2 to L1 norm” [34]56, for achieving 

“better convergence”. Moreover, alongside their single-scale model, the authors also proposed a multi-

scale variant, namely MDSR, which is inspired by VDSR [205] to “take advantage of inter-scale 

correlations” [211]. By implementing “scale-specific processing modules” in the head of the single-

scale network, the model became capable of handling SR in “multiple scales”. Per the results, the 

authors report that EDSR “surpasses current models” and achieves state-of-the-art performance, with 

MDSR competing with a “comparable performance”. Later inspired by EDSR, a ResNet variation 

namely DSen257 was proposed [18], that learned to “transfer the high-frequency content” of the HR 

spectral bands, to the LR spectral bands of Sentinel-2 imagery; contrary to the methods prior, that 

“hallucinate” HR textures based on previously seen images. Such that the resulting pixels in DSen2’s 

output(s), have “plausible spectra”. Due to the methods “global applicability” for Sentinel-2 imagery 

up-sampling, it is widely respected in literature as the “representative method in the CNN category” 

[1]; where the methods proposed regulariser, serves as a “big regression engine” [18] from multi-

resolution input patches to high-resolution patches, such that it automatically adapts to arbitrary size 

input data [1]. It is also worthy to mention that the network utilises the full “12/16-bit depth” [32] of S2 

images, ensuring spectral information is not lost, as the authors of [212] otherwise discard, in 

repurposing SRCNN and VDSR for “Pléiades as well as SPOT images” [32]. Providing the “excellent 

performance” [18] achieved by this model and its very deep counterpart58, in reducing the Root Mean 

Square Error (RMSE) of predictions by “50% compared to the best competing methods”, the state-of-

the-art has since been referred to in deriving many of the most present-day works in the domain [22, 

213]. 

 

 

2.2.5 Data Augmentation 

 

 DA within the domain of example-based SISR, takes upon a variety of instruction [121] to 

“effectively improve the performance” of example-based SR models, both architecturally and 

prophetically. Of these two focuses, the latter has been scarcely investigated [52] despite TTA being 

present for a “long time in deep-learning research” [122]. As one of the most practical and cost-effective 

 
51 Otherwise regarded as a “16 blocks deep ResNet” [210]. 
52 Referred to as ResBlocks. 
53 Mean Squared Error. 
54 Including SISR. 
55 The Enhanced Deep Super-Resolution network. 
56 From Mean Squared Error (MSE) to Mean Absolute Error (MAE). 
57 The Deep Sentinel-2 network. 
58 Namely, Very Deep Sentinel-2 (VDSen2). 
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approaches to enhancing “model performance” [52], TTA in more recent works, has “often been used 

to produce more robust prediction results” [123]. Commonly, TTA can be characterized as the linear 

process that governs image “augmentation, prediction, dis-augmentation, and merging” [214]; which 

can be viewed “analogous to ensemble learning techniques in the data space” [115].  

 

 

 
 

Figure 25: Depiction of seven augmented input images by rotation and flip transformations; the geometric self-ensemble 

scheme [121]. 

 

 

  As the first study into DA techniques for “improving the performance” [52] of example-based 

SISR, the work of [121] proposed seven “generic” techniques to achieve “substantial improvements”, 

without incurring changes to the baseline method. Of the seven techniques, the authors approach TTA 

or “enhanced prediction” as a basic matter of averaging the predictions of a “set of transformed images”, 

derived from the prediction of an input image. In which the authors address by using “cropping, flipping, 

and rotating” operations, in achieving “consistent improvements across models and datasets” [52] alike, 

without significant increases in running time [121]. Prior to this study, in [116] the authors similarly 

averaged the predictions of AlexNet, an image classification model, over a series of “random crops and 

flips of test data” [122]. Which then led to becoming a “standard evaluation protocol” in the future 

works of [117, 209], following its success. Further in this direction, pioneered in [211] the authors 

derive a technique, namely ‘geometric self-ensemble’, that also standardises the work of [121] as set of 

“seven augmented inputs” [211], at the time of inference [215] (see Figure 25). Which entertains a 

“performance gain” similar to conventional model ensemble methods, without the requirement of 

“individually trained models”. Thus, encouraging the techniques presence in numerous other works 

following [216, 217, 218], wherein [216] the authors alternatively take the “median” of eight outputs 

as opposed to their “mean”. Deferring from this arrangement of techniques specifically, the authors in 

[219] report the best performance gains for image classification tasks, in use of “geometric and colour 

transformations”, combinatorically. Remaining relevant to image classification, the authors of [220] 

also report the “effectiveness” [115] of using geometric transformations. Beyond this narrative, as a 

“promising practise” for medical image diagnosis applications, the authors in [221] denote TTA as ‘data 

distillation’, in which they adopt “scaling and horizontal flipping” transformations to fabricate a “multi-

transform inference”, that consistently improves upon the results of state-of-the-art models. In the same 

year, [61] introduced a novel “random shifting technique” that utilises a translation operation in a 
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“uniformly” random, iterative fashion, to improve the spatial quality of Magnetic Resonance (MR) 

images. Unlike prior methods, this technique is both iterative and stochastically-driven, which the 

authors of [221] suggest as being a potential improvement and future work of theirs. Reportedly, the 

technique obtains “better results”, quantitatively, over a state-of-the-art method59. Thereon, other 

similar works have since been proposed [222, 223], none of which offer remarkable advances in the 

domain, however. 

 

 

Chapter 3 | Methodology 
 

3.1 Research Approach 
 

 In summary of the literature explored for the tackling SR, when taking the “standard metrics” 

[32] of image quality assessment (IQA) into consideration60, it is apparent that the “deeper, residual 

networks deliver the best results”. Where identified by the literature as an influential, state-of-the-art 

method tailored to Sentinel-2 SISR, this study purposes DSen2 [18]61 as both the core baseline and 

augmented62 models for the experiments aforementioned63. Aside from the model achieving state-of-

the-art performance and being publicly available, the globally applicable [18] network also supports 

input data of arbitrary size64, which it addresses using “zero-padded convolution”, as well as the native 

colour depth of Sentinel-2 images, that enables the spectral information of input data to be well-

persevered. In addition to these features, the model also arrives “pretrained” in lower-evaluation scale 

settings, 40→20m65 and 360→60m66 GDS’s respectively [166], aligned with the authors claim 

regarding “scale-invariance” [18]; where the spatial-spectral mappings between LR-HR image pairs are 

acknowledged as being “roughly equivalent”. Such that the authors train two CNNs with data at the 

scales listed, to perform 20m→10m and 60m→10m up-sampling, respectively. In knowing of this and 

by assessing the specifications of the hardware available to the study67 and of that used in [18], the 

elected TTA techniques could be trialled at even lower-evaluation scales, respectively, and still be 

representative of SR for both contemporary and dated68 MS satellite imaging. That not only addresses 

modern-day RS interests, but historical ones more so [224]. It is on these grounds that DSen2 is 

favoured. 

 

  Supplementary to the study, the classical bicubic interpolation method [140] is appointed as 

another reference model, as not only is the method used to synthesise lower-resolution images [18], but 

it is widely applied as a comparative up-sampling technique in the SISR domain [102, 121, 201]. Which 

is a convention this study respects also. 

 

  Entertained by the review of DA strategies regulated in recent DL applications, it is certain that 

techniques derived from geometric transformations prove to be the state-of-the-art. In which TTA 

 
59 Namely SRCNN3D. 
60 They are peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). 
61 Publicly available from: https://github.com/lanha/DSen2. 
62 Termed DSen2+, in following the field-standard notation of data augmented models [201, 211]. 
63 Refer to subsection 1.3. 
64 Reflecting the width and height dimensions of a two-dimensional image. 
65 For 20m to 10m GSD spectral band up-sampling; a scale factor of two. 
66 For 60m to 10m GSD spectral band up-sampling; a scale factor of six. 
67 Refer to subsection 3.4. 
68 Perhaps archived. 
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specifically, demonstrates consistent enhancements to a model’s inference capability, whilst being easy 

to use and simple to put into practise; this is deemed attractive from a development standpoint. Which 

is reflected by TTA’s recurrence in many works, respective of all other augmentation strategies 

currently known and trialled for image classification and super-resolution tasks [115]. Among the 

strategies identified, both the geometric self-ensemble [211] and the stochastic translation scheme [61] 

methods display state-of-the-art performance gains, relative to the PSNR and SSIM IQA metrics, over 

various state-of-the-art SR methods. As well, the corresponding authors report that each technique does 

not require additional training of the affected model(s) and can be addressed using “off-the-shelf 

libraries” [120]. It is for these reasons that both of the aforesaid methods are adopted. 

 

Given the state-of-the-arts identified, this work proposes that the abovementioned DA 

techniques are implemented within the predictive phase of the DSen2 model, for acquiring higher, 

spatially enhanced Sentinel-2 imagery. Optimal configurations for both DA techniques are explored 

separately, relevant to the number of transformations each technique derives from a given input image, 

as well as the nature of the transformations themselves. This surpasses the scope of the techniques as 

they are reported in [18] and [61], in hope of establishing a representative set of DA technique 

configurations, tailored to RS applications; providing that this nature of study has not been investigated 

for satellite imaging SR prior [109]. Furthermore, the order in which the DSen2 model crops Sentinel-

2 tiles [18] and that the DA techniques are applied, before or after “tilting”, is also studied to extend the 

efforts towards reaching optimal configurations. Like [216], the sampling operation used to obtain the 

resulting ensemble image is also examined, to further warrant the best possible configurations; this 

entertains that either a mean or median aggregate is produced from a set of transformed images. As 

well, a combinative use-case of the techniques is then analysed upon discovering each’s optimal state, 

to identify whether a joint effort can surpass the spatial resolution achieved by the baseline model, and 

when either technique is applied in isolation. 

 

  Of particular focus to this study, only the 20m GSD bands of Sentinel-2 tiles are affected, to 

address the investigations proposed. Specifically, the RGB composite of spectral bands B5, B6, and B7 

is studied, which constitutes to the ‘vegetation red edge’ frequency wavelength (see Table 1) and 

focuses upon the measure of “vegetation chlorophyll content” [225]; desired for land-cover and climate 

change monitoring. This is aligned with the limitations posed by the hardware available to the study. 

Which throughout the development cycle, was noticed to be inadequate for super-resolving the 60m 

GSD bands, because of the processing expense incurred by DSen2’s approach to tile decomposition. 

Aberrations from the model’s original schematic were not anticipated nor of interest to this study’s 

demonstration also. To note, DSen2 defaults to the B5, B6, and B7 band RGB composite for 20m GSD 

up-sampling, as opposed to the B8A, B11, and B12 band alternative. Nonetheless, the 10m GSD bands 

do not have any participation in the experiments discerned, providing that they natively support a VHR, 

and quantitative evaluation on Sentinel-2 images is “only possible at the lower scale at which the models 

are trained” [18], regardless. Where instead, this study opts for evaluation at lower scales, 80→40m 

and 40→20m GSD’s respectively, based on the model’s assumption of scale invariance. In which the 

results can be reasoned as being representative of the 60m GSD bands also, knowing that lower-

resolution images naturally inherit more instances of noise and artifact articulation. Although a 

limitation of this study, the experimentation that is feasible does not affect the credibility of the 

discoveries made and the conclusions that are then later drawn.  
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3.2 Inference Data 
 

 Sentinel-2 data is freely available and can be acquired from the Copernicus Open Access Hub 

[226], in tiles of 110 x 110km2 (≈0.8GB per tile) [18]. Like [22], this study repurposes the tiles used in 

[18], to evaluate the performances of the reference and augmented models. Of the fifteen tiles that were 

originally purposed for testing, ten of those are arbitrarily selected for this study. Which is an amount 

deemed sufficient for accurately representing the findings of this study, especially as they are sampled 

“from around the globe”. 

 

 

 
 

Figure 26: Depiction of a map of the world, illustrating the locations of the Sentinel-2 tiles acquired for training and testing 

the DSen2 model [18]. 

 

 

  Therefore, this study utilises data from both Sentinel-2A and Sentinel-2B satellites, acquired 

between December 2016 and November 2017, as well as July 2017 and November 2017, respectively. 

The authors claim to have chosen these tiles “randomly”, to obtain an even distribution of “climate 

zone, land-cover, and biome type” (see Figure 26); each with no undefined black backgrounding pixels, 

to note. 

 

 

3.3 Development Tools 
 

 Supporting the development process of the study, below, identifies the software suites and 

utilities that were used throughout its undertaking. 

 

 

3.3.1 Programming Languages 

 

  Python 3 – an “interpreted, object-oriented, high-level programming language with dynamic 

semantics” [227]. Python is simple and easy to learn, that features built-in data structures, dynamic 

typing, and dynamic binding, making it very appealing for rapid software development. As well, the 

language supports a wide variety of modules and packages, that “encourages program modularity and 

code reuse”. This is the principal development language of [18]. 
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3.3.2 Integrated Development Environments 

 

  Microsoft Visual Studio – a creative suite that one can use to “edit, debug, and build code” [228] 

with. Visual Studio (VS) includes “compilers, code completion tools, graphical designers, and many 

more features to ease the software development process”, that as a feature-rich program, can be 

purposed for the development of many software applications. As a widely used client-side program, VS 

provides “open-source support for the Python language” [229]. 

 

  Google Colaboratory – Colaboratory or “Colab for short” [230], is a free-to-use product from 

Google Research, that allows “anybody to write and execute arbitrary Python code through their 

browser”. It is well-suited to machine learning, data analysis, and educational interests, that as a server-

side suite of tools, provides free-access to computer resources “including GPU’s”. This program is 

convenient for processing data faster than most local workstations, supporting Python 3, which is 

accordingly purposed for IQA. 

 

 

3.3.3 Software Utilities 

 

  Imageio – a Python-specific library that provides an easy interface to “read and write a wide 

range of image data” [231], including data of animated, volumetric, and scientific formats. The utility 

is “cross-platform”, “easy to install”, and for the nature of this study, is necessary for writing processed 

image data to an array of external file formats. 

 

  OpenCV – an “open-source computer vision and machine learning software library” [232]. 

OpenCV has a range of programming interfaces, including Python, and provides support for many 

operating systems also. As one of the libraries focuses, OpenCV supports a suite of image processing 

tools, including geometric transformations for image data [233], featuring scaling, translation, rotation, 

affine, and perspective manipulations. 

 

  Scikit-image – a free-of-charge and free-of-restriction collection of algorithms, purposed for 

image processing applications [235]. Aside from the libraries image processing modules, scikit-image 

also provides separate support via utility methods, to address image data type conversion [236]. Which 

is principal for preserving the spatial-spectral information of images, pre- and post-processing. 

 

  Sewar – a Python-derived package for performing “image quality assessment using different 

metrics” [237], including MSE, RMSE, PSNR, SSIM, and UQI to name a few. Which is necessary for 

recording comparative spatial enhancements or degradations, post image super-resolution. 

 

 

3.3.4 Complementary Platforms 

 

  Conda – a “powerful package manager and environment manager” [238], that can be engaged 

using command-line instruction. Conda allows one to create “separate environments containing files, 

packages, and their dependencies”, that do not interact with other environments. As a command-line 
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interface, Conda can also be used to execute script files of Python and R language data types, as is 

entertained by [18]. 

 

  QGIS – a free and open-source geographic information system (GIS), that enables one to 

“create, edit, visualise, analyse and publish geospatial information” [239], with a range of supported 

operating systems and devices. This is purposed as a per-band inspection tool for Sentinel-2 imagery, 

which supports satellite imaging colour depths. 

 

 

3.4 Hardware Utilised 
 

Tabularised below, identifies the combination of hardware components and operating system(s) 

utilised throughout the research and development cycles of the study undertaken. 

 

 

Table 2: Tabularised feature of the hardware components and operating system(s) utilised throughout the research and 

development cycles of the study undertaken. 

 
Component Description Specification 

Graphics Processing Unit 

(GPU) 

GeForce GTX 970 GAMING 4G 

 

Core Clock Speed 

▪ 1279 MHz / 1140 MHz (OC Mode) 

▪ 1253 MHz / 1114 MHz (Gaming 

Mode) 

▪ 1178 MHz / 1051 MHz (Silent Mode) 

Memory Clock Speed 

▪ 7010 MHz 

Memory Size (VRAM) 

▪ 4096 MB 

Memory Type 

▪ GDDR5 

Memory Bus 

▪ 256-bit 

Central Processing Unit 

(CPU) 

 

Intel Core i7-5820K 

 

Core Count 

▪ 6 (hexa-core) 

Thread Count 

▪ 12 (logical cores) 

Processor Base Frequency 

▪ 3.30 GHz 

Processor Maximum Turbo Frequency 

▪ 3.60 GHz 

Cache 

▪ 15 MB Intel Smart Cache 

Random Access Memory 

(RAM) 

HyperX FURY DDR4 

 

Memory Capacity 

▪ 32 GB (8 GB Single x4) 

Memory Speed 

▪ 2666 MHz 

Column Address Strobe or Signal (CAS) Latency 

▪ CL16 

Operating System (OS) Microsoft Windows 10 Edition 

▪ Home 

 

 

Chapter 4 | Implementation 
 

4.1 Methodology 
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 In this section, a description of the study’s development cycle is provided, aligned with the 

model requirements for conducting the abovementioned trials. 

 

 

4.1.1 Model Configuration 

 

  In following the directives provided by the authors of [18] at [240], one can acquire the DSen2 

model, in a readily executable state. However, unspecified by their instruction, a user should consider 

using Conda [238] that integrates the Python package-management system (PIP) [241], for seamlessly 

installing all the required utility packages and for then executing the model. Conveniently, this 

installation procedure can then also be reiterated for the software utilities required for this study’s 

experiments, as they are listed in the section above. To execute the model, one should refer to the 

command-line instructions provided by [240] as well. However, in the case of a ‘cudaNN library’ 

incompatibility error encounter, instead refer to [242] to acquire the version that was originally used to 

compile the model with69. 

 

 

4.1.2 Model Adaptation  

 

 Providing the TTA focus of this study, it was only necessary for the ‘s2_tiles_supres.py’ and 

‘supres.py’ [240] Python script files to be modified, aligned with the experiments proposed. As both 

data structures wholly contain the image pre-processing, super-resolution, and post-processing 

procedures of the model, respectively. Supplementary to the augmentation of the model, min-max 

contrast stretching [243] as a default image post-processing technique of QGIS [239], is implemented 

in both files mentioned to “improve the contrast” of all image data (see Appendix B). This poses as a 

simple method towards the enhancement of an image’s perceptual quality, that renders one more colour-

rich and naturally appealing, in correspondence to the issues reported in [244]. The enhancement, 

however, is addressed via remapping the original maximum and minimum pixel values of an image, to 

a “newly specified set of values that utilize the full range of available brightness values”. 

 

 

 
 

 
69 The required version is cudaNN 8.1.0, or alternatively a higher minor version variant. 
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Figure 27: Depiction of a super-resolved, 2,000 x 2,000-pixel crop of a Sentinel-2, 20m GSD tile image, with an RGB colour 

composite comprised of bands B5, B6, and B7. On the left, illustrates the image in the absence of min-max contrast stretching, 

whereas the depiction located to the right demonstrates the perceptual quality when min-max stretching is otherwise applied. 

 

 

  Designed for all possible use-cases, min-max stretching is configured as a method, namely 

‘min_max_contrast_stretch’, that arbitrarily handles single-band images and colour composite images, 

comprised of multiple bands. The operation is contained within a method declaration to adhere to code 

reuse practises, and can simply be characterised by the following notation [243]: 

 

 

𝑥𝑛𝑒𝑤 = 255 ∗
𝑥𝑖𝑛𝑝𝑢𝑡 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

(4.1) 

  

 

  Additionally, for the enablement of per-band inspection in QGIS, this study also extends the 

use of the ‘write_band_data’ method70 (see Appendix C), for exporting all ground truth, bicubically 

interpolated, and super-resolved image datasets, as separately generated files of geo-referenced data 

types71. 

 

 

4.1.3 Model Augmentation 

 

Advancing from the customary adaptations imposed on the DSen2 model, below, details the 

methodologies proposed for augmenting the DSen2 model, at the time of inference. 

 

 

4.1.3.1 Down-sample Simulation 

 

 Aligned with the explanation given in [18], one can generate inference data with a “desired 

scale ratio 𝑠”.  Of interest to this study, 80→40m and 40→20m up-sampling can be achieved using the 

original 20m spectral bands of the nominated Sentinel-2 tiles, meaning 𝑠 = 4 and 𝑠 = 2 respectively. 

Such that ground truth data can either be acquired from the original 20m bands directly (for 40→20m), 

or when the 20m bands are down-sampled, where 𝑠 = 2 (for 80→40m). To heighten the realism of the 

down-sampling procedure, as described in [18], this study performs the image degradation process 

closely aligned with the modulation transfer function (MTF) of Sentinel-2’s MSI. Which uses 

“Gaussian-like low-pass filters” [244] to achieve spatial degradation. As such, the original Sentinel-2 

tile data is first blurred via a Gaussian filter, with a standard deviation of σ = 1/s pixels, before then 

being down-sampled by “averaging over 𝑠 𝑥 𝑠 windows” (see Figure 28). 

 

 

 
70 Located in ‘s2_tiles_supres.py’. 
71 By default, the DSen2 model generates GeoTIFF data types for this purpose. 
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Figure 28: Visualisation of the down-sampling process used for simulating the inference data at lower evaluation scales [18]. 

 

 

 From a programmatical standpoint, this work repurposes the ‘downPixelAgrr’ method72 to 

execute the process described above; providing that the authors evaluate the model at a lower scale in 

their work, where quantitative evaluation is “only possible” [18]. Which requires the relevant image 

and its desired scale factor, as its functional parameters (see Appendix D). As a pre-processing practice, 

the method is consequently invocated in the ‘s2_tiles_supres.py’ script file, prior to any image data 

being super-resolved (see Appendix E).  

 

 

4.1.3.2 Geometric Self-ensemble 

 

 Corresponding with the geometric transformations featured in the work of [211], this study 

authors the support for image inversion and rotary operations, to primarily generate seven 

augmentations of a given Sentinel-2 tile image, at the time of inference (see Figure 29). To achieve 

such, three methods, namely ‘rotate_image’, ‘invert_image’, and ‘rotate_invert_image’ are separately 

defined73, to distinguish between the dissimilarities of each transformation policy (see Appendix F); 

syntactically, modular declarations were believed to be better-adapted for maintaining the robustness 

of the code base and for expediting development. To note, each of the methods listed, requires an image, 

a transformation constraint, and a Boolean argument as its functional parameters. Firstly, the 

transformation constraint is resolved by the OpenCV [233] utility, as either a ‘flip’ or ‘rotate’ operation, 

before each of the spectral bands comprising the image can then be transformed, in an iterative manner, 

for establishing a new inter-band co-registration. Aligned with the tile decomposition feature of the 

model, the Boolean argument, namely ‘tiled’, exists to condition the invocation of each methods 

functionality; dictating whether the transformation constraints are to be applied to a tile image, or 

alternatively, an image that has been decomposed into a sequence or array of tiles. Thus, to investigate 

the sequencing hypothesis of this study.  

 

 

 
72 Located in ‘patches.py’ of the DSen2 repository. 
73 Located in ‘supres.py’. 



48 

 

 
 

Figure 29: Depiction of augmented 2,000 x 2,000-pixel crops of a Sentinel-2, 20m GSD tile image, with an RGB colour 

composite comprised of bands B5, B6, and B7. Demonstrating the reproducibility of the geometric self-ensemble scheme, at 

the time of inference, as is reported in [211]. 

 

 

For simplicity, all transformation constraints are defined within separate array declarations in 

the ‘DSen2_20’ method74 (see Appendix G), which has been extended to govern both 20m band super-

resolution and TTA procedures. Arrays of transformation constraints were opted for, given the iterative 

nature of deriving image transforms, that through element-wise indexing, allows each transformation 

constraint to be accessed and then applied to a new instance of the input image, autonomously. To note, 

for every array of transformation constraint75 there exists a corresponding array, purposed to “reversing 

the transformation on the HR outputs” [121] (see Appendix G); this is required for obtaining an 

ensemble of the predictions, for which the transformed images are restored to their original pose to 

address. Importantly, this arrangement is not limited to a specified set or number of transformations, as 

all transformations are appended to an aggregate array, namely ‘all_constraints_unapplied’, where they 

are all invocated from. Which allows all possible combinations and quantities of transformations to be 

explored, for this study’s anticipation of achieving optimality. 

 

 

4.1.3.3 Stochastic Translation 

 

  Aligned with the instruction provided in [61], this proposal also adopts the implementation of 

the ‘random shifting model’, to generate a series of stochastically translated images at the time of 

inference. Like the operators constituting geometric self-ensemble, the unary operator of this scheme is 

also defined as a method, namely ‘translate_image’, following the regularity of naming conventions 

(see Appendix H). That also requires an image, transformation constraint, and Boolean argument as its 

functional parameters, for the same conveniences mentioned prior. Wherein, each transformation 

constraint is received as a set of coordinates, in 𝑥 and 𝑦 axis notation respectively, representing the 

positional or translative offsets in pixel space, that are inflicted on each of the spectral bands comprising 

an image. Image translation is addressed by the authors [18] existing feature of the numerical Python 

 
74 Located in ‘supres.py’. 
75 Except for inversion operations. 
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(NumPy) [246] utility package, that can be used to ‘roll’ or displace an image at a pixel level, to the 

positions that correspond with the schemes randomly generated offsets. As the data structure 

representing an image can be interpreted as an array, by ‘rolling’ the data, an image can be uniformly 

wrapped around its canvas space, as opposed to being projected beyond it76. Such that all image data 

remains within the original canvas space (see Figure 30), as is later required for reversing the 

transformation(s) proceeding super-resolution. Meanwhile, the Boolean argument ‘tiled’ is likewise 

applied to control the methods functional invocation, for investigating the significance of DA 

sequencing in this study. 

 

 

 
 

Figure 30: Depiction of augmented 2,000 x 2,000-pixel crops of a Sentinel-2, 20m GSD tile image, with an RGB colour 

composite comprised of bands B5, B6, and B7. Demonstrating a wrapped mode of pixel translation (left) and a constant mode 

of pixel translation (right), at the time of inference. 

 

 

  To address the generation of transformation constraints, a separate method is defined, namely 

‘define_translation_constraints’ (see Appendix I). Wherein, random integer values representing the 

positional offsets for both 𝑥 and 𝑦 axis modes of translation, are sampled from two separate uniform 

distributions configured with the range [−𝑇, 𝑇], for a desired “number of shifts” [61]. Such that 𝑇 

represents the maximum offset allowed for an image, with respect to the count of pixels along any given 

axis. Which is derived from the term 𝑇 = 𝐷 ∗ 𝐾, where 𝐾 represents the “window size” of the operation, 

and 𝐷 corresponds to the width or height dimension of the image77. Unlike previous method definitions, 

this method requires an image, a window size, a transformation count, and two array data types in which 

the compiled constraints populate78 (see Appendix J). 

 

 

4.1.3.4 Test-time Adaptation 

 

  Dissimilar to the implementation of geometric self-ensemble, an independent testing regime 

correlated with [61] is also featured by this work, in determining an optimal parametric configuration 

of the stochastic translation scheme. In which this study abandons the configuration it presents for MR 

 
76 This create black-pixel margins, from where an image has been displaced from. 
77 Refer to line 212 in Figure 42. 
78 These variables are passed by reference rather than by value. 
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imaging, to identify one that is optimal and representative of RS applications, that utilise MS imagery. 

In doing so, a testbed is also configured within the ‘DSen2_20’ method, for identifying the optimal 

window size and the number of shifts or translated images, that should constitute to the ensemble output 

(see Appendix K). To utilise the testbed, one should ensure that the ‘translation_testbed’ argument of 

the containing method, is set to ‘true’. Following the algorithm as it is proposed in [61], the testbed 

initially populates a “set” or array of translation vectors, using the ‘define_translation_constraints’ 

method, as it is characterised in the section above. Secondly, in an iterative fashion, for every 

transformation constraint that has been populated in the respective array, a new instance of the input 

image is then derived from computing the transform that is currently cycled. Which is addressed via the 

‘translate_image’ method by passing a copy of the input image79 and the corresponding constraint; 

optionally, the transformation can be applied to the image, before or after it is decomposed into a series 

of tiles, by regulating the state of the ‘self_ensemble_before_tiling’ argument80. Thereon, the image is 

then passed to the models CNN for up-sampling, alongside the 10m band data, in producing a HR render 

of the transformation. Upon which, the images pose is then negated by recycling the ‘translate_image’ 

method, that instead passes the inverse constraint for the transformation that was previously applied. 

The entirety of this procedure results in the obtainment of a single HR restoration, that governed by an 

iterative statement, proceeds to produce a series of similar images, so that an ensemble of the series can 

be acquired, representing the “final restored HR image”. 

 

  Given that the testbed is an encapsulation of all operations described above, per iteration of the 

series, the model encounters an incremental increase in the number of images to super-resolve, that 

subsequently comprise the ensemble output. For every ensemble output that is compiled, its contrast is 

enhanced via min-max stretching, using the ‘min_max_contrast_stretch’ method. Before its perceptual 

quality is then compared with the respective ground truth data, using the suite of Sewar [237] IQA 

methods available. The results obtained from the IQA metrics that have been purposed to this study, 

are then output to external files of ASCII data types81, for later review; in determining the optimal 

configuration of the schematic. In this study, the proposed testbed terminates upon an ensemble of fifty 

images being produced in a single cycle, instead of the one-hundred that the authors climax to in their 

work [61]. This is aligned with the developing decline in model performance, that they report to occur 

after an ensemble of thirteen images has been created, which is inferred from the results of three input 

images, nominated from three distinct datasets. 

 

  Advancing from the testbed’s incorporation into the model, the integration of geometric self-

ensemble and the stochastic translation scheme adopts a very similar approach (see Appendix L). That 

instead, utilises all transformation methods and constraint types available to the study, to acquire 

ensemble outputs for either augmentation strategy. Such that the aggregate array, namely 

‘all_constraints_unapplied’, can be populated with all types of transformation constraint, to address 

combinative and single use-case scenarios of the techniques, as this study aims to investigate the 

performance implications of. Distinguishing from the testbed’s implementation, however, is the absence 

of the IQA metric calculations and their output, which is deferred to an external process, for simplicity. 

As well, proceeding from the acquisition of an ensemble output, the baseline model is then executed to 

obtain the reference image of the study, which is then also subjected to contrast enhancement, for 

upholding perceptual consistency in the results. 

 

 
79 By value and not by reference. 
80 Which is a parameter of the ‘DSen2_20’ method definition. 
81 This study purposes files of (.txt) formats. 
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4.1.3.5 Ensemble Image Sampling 

 

 To acquire an ensemble image, an array, namely ‘super_resolved_transformations’, is defined 

for containing all the restored HR images, to which they are appended, after each super-resolved images 

pose is restored (see Appendix L). Upon all images being gathered, the array is then exposed to either a 

mean or median sampling operation, to derive the aggregate result. Which is simply addressed using 

the corresponding methods provided by the NumPy statistics [247] utility. To expedite the experimental 

process, the associated NumPy methods can be passed by value to the ‘DSen2_20’ method, alike the 

‘self_ensemble_before_tiling’ and ‘translation_testbed’ Boolean arguments. As mentioned previously, 

support is provided for multiple sampling operations to investigate and warrant the best possible 

configuration for the model. 

  

 

4.1.4 Image Quality Assessment 

 

  For comparative purposes, as an “elementary baseline” [18] of the study, bicubic interpolation 

is featured to demonstrate a naïve up-sampling of Sentinel-2 data, that does not preserve the spectral 

correlations therein. Given the methods simplicity and long-standing support, the OpenCV [233] utility 

package is used to bicubically up-sample the image data, corresponding to the dimensions of the 

ensemble output82. 

 

To obtain a comprehensive quantitative comparison of the predictions acquired by the baseline 

and augmented models, several popular IQA metrics in the literature [17, 18] were considered for 

validating this study’s outcomes. They are: 

 

 Peak Signal-to-Noise Ratio (PSNR) – a “standard metric” [17] used to evaluate the quality of 

a reconstructed image, on a “pixel-wise” [102] basis. Derived from Mean Square Error (MSE) [248], 

PSNR indicates the “ratio of the maximum pixel intensity to the power of the distortion”; higher PSNR 

generally infers a higher quality image. 

 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
)   83 (4.2) 

 

 

  Structural Similarity Index (SSIM) – a metric that measures the similarity between two images, 

considering their “luminance, contrast, and structure” [17]; higher SSIM indicates a more convincing 

reconstruction, such that a SSIM equal to one, corresponds to “identical images”. 

 

 

 
82 Unlike the ensemble output, bicubic interpolation is performed within the ‘s2_tiles_supres.py’ Python script 

file. 
83 Where 255 represents the maximum grey-level of an 8-bit, monotonic image. 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2µ𝑥µ𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(µ𝑥
2 + µ𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
  84 (4.3) 

 

 

  Root Mean Square Error (RMSE) – a metric that measures the root “average squared difference 

between actual and ideal pixel values” [248] of two images; higher RMSE infers lower image qualities, 

such that the amount of change per pixel is increasingly obvious. 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥 − 𝑥)2   85 (4.4) 

 

 

  Spectral Angle Mapper (SAM) – a metric that “measures how faithful the relative spectral 

distribution of a pixel is reconstructed, while ignoring absolute brightness”. Calculated as the angular 

deviation between two images; higher SAM indicates an increasing similarity between two given 

images. 

 

 

𝑆𝐴𝑀 = 𝑐𝑜𝑠−1 [
∑ (𝑇𝑖 ∙ 𝑅𝑖)𝑛

𝑖 = 1

(∑ 𝑇𝑖
2𝑛

𝑖=1 )
1
2 ∙ (∑ 𝑅𝑖

2𝑛
𝑖=1 )

1
2 

]   86 (4.5) 

 

 

  Universal Image Quality index (UIQ) – a “unitless” [18] yet universal measure of the 

“difference in pixels” [249], between two images, relative to each’s “luminance, contrast, and structure” 

[18]. Higher UIQ supposes superior image quality, such that a UIQ equal to one, corresponds to 

identical images. 

 

 

𝑄 =  
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
∙  

2�̅��̅�

(�̅�)2 + (�̅�)2
 ∙  

2𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2   87 (4.6) 

 

 

 
84 Where: µ𝑥 and µ𝑦 represent the mean values of images 𝑥 and 𝑦, 𝜎𝑥 and 𝜎𝑦 represents the standard deviation of 

the images, and 𝜎𝑥𝑦 represents the covariance of the images [61]. Whereas constants 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 

represents the values that “depends on the dynamic range (𝐿) of the pixel values” [17]. Default values were used: 

𝐿 = 1, 𝑘1 = 0.01 and 𝑘2 = 0.03. 
85 Where �̂� represents each reconstructed spectral band (vectorised), 𝑥 represents the vectorised ground truth 

band, and 𝑛 represents the number of pixels in 𝑥 [18]. 
86 Where 𝑛 represents the number of spectral bands comprising images 𝑇 and 𝑅, 𝑇𝑖  represents the reflectance 

value of band 𝑖 in the test spectra, and 𝑅𝑖 represents the reflectance value of band 𝑖 in the reference spectra. 
87 Where the first component represents the correlation coefficient between images 𝑥 and 𝑦, the second 

component represents the measure of how close the mean luminance between the images is, and the third 

component represents the measure of how similar the contrasts of the images are [250]. 
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  All metrics identified above are implemented in a Python (Jupyter) notebook file88, dedicated 

to IQA, that exists outside of the DSen2 model and its repository (see Appendix M). This enables a 

server-side machine provided by Google Colab [230], to be utilised for conducting IQA routines, whilst 

the local-machine available to this study can then be committed to generating the results for the 

experiments proposed. Thus, expediting the study’s research cycle. Similar to the testbed proposed, the 

suite of IQA methods provided by the Sewar [237] utility, are re-adopted, to infer the reconstruction 

performance of all models bound by this study89. 

 

 

Chapter 5 | Evaluation 
 

  In this section, the experiments proposed and embarked on for the interests of this study are 

identified, and a numerical analysis for each experiments outcomes is provided, in resolve of the 

hypotheses presented for the works undertaking. 

 

  As mentioned before, this work aims to identify optimal configurations for both single and 

combinative use-cases of geometric self-ensemble and the stochastic translation scheme, for the 

emphasis of RS applications that operate with MS imagery. In doing so, this work proposes to explore 

each strategies configurative state, beyond the scope of what their authors originally articulate. With 

the ultimate purpose in mind, which is to inexpensively, surpass the spatial resolution achieved by a 

state-of-the-art SR model, in supporting more detailed and accurate information extraction, of lower-

resolution satellite imaging. To reiterate, only the 20m spectral bands of Sentinel-2 tiles are subjected 

to augmentation in this work, due to the hardware capacity available; specifically, the RGB composite 

of bands B5, B6, and B7, are studied, as they are defaulted to by the DSen2 model. 

 

 

5.1 Experimental Results 

 

  With the support of the features introduced to the model, as they are presented in the 

implementation section of this paper, this study puts forth the following research. 

 

 

5.1.1 Stochastic Translation  

 

  Preliminarily, to ascertain the performance implications of the stochastic translation scheme, 

the testbed proposed for the technique is firstly engaged with, to establish the schemes optimal 

parametric configuration. Wherein, for the fifty translations that the testbed endures in every 

experiment, as mentioned prior, this work trials a window size of: 25, 50, 75, and 100, which extends 

from the 25 trailed in the original work [61]. As well, for each window size listed, the translations are 

also trialled before and after tiling the input image. For this series of experiments, only the results for 

the average ensemble operation are recorded, as the median ensemble operation was consistently 

observed to incur a computational expense, that would eventualise the termination of the programs 

runtime session. Which is correlated with the hardware constraints posed on this study. However, for 

 
88 Namely, ‘Super-Resolution: Image Quality Measure.ipynb’. 
89 To note, ensemble images output by model are required to be uploaded to Google Drive, for use with Google 

Colaboratory. 
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all the experiments successfully documented, the model processes full-size Sentinel-2 tiles (10,980 x 

10,980 pixels) evaluated at the lowest scale that this work examines (80→40m GSD), for an arbitrarily 

chosen series of images. Like [61], each experiment is repeated for three unique images (see Figure 

31), in the obtainment of credible results. 

 

 

 
 

Figure 31: Depiction of the three Sentinel-2 tile images, of size: 10,980 x 10,980 pixels, elected for the parametric 

configuration of the stochastic translation scheme. 

 

 

  In correspondence with the quantitative evaluation obtained, as is displayed in the table beneath 

this passage, one can infer that applying the translations before the input image is tiled, yields 

consistently better results, in comparison to after tiling the image. As is supported by each of the 

featured IQA metrics. Moreover, it is evident that using smaller window sizes to govern the translative 

potential of each image, yields better restorations than when opting for greater ones. Such that a window 

size of 50, is observed optimal. As well, it is also noticed that fewer translated images constituting to 

the ensemble output, attains consistently better results, in conjunction with the after tiling sequencing 

pattern. Given these discoveries, the optimal translation count is revealed to be an ensemble of 37 

images, derived from the input data. Such that the optimal parametric configuration of the stochastic 

translation scheme, within the boundaries of the experiments conducted, is determined as the following: 

window size = 50 and translation count = 37. Refer to Appendix N, for the evolution of the IQA metrics, 

representing the optimum experiment. 

 

 

Table 3: Quantitative results for 80→40m GSD, representing the performance of the stochastic translation scheme, when 

subjected to a series of parametric configurations. Relative to an alternating window size and appliance of the translation 

operation; before and after tiling the input image. The results are averaged across the three images appointed to the 

experiment; the best are highlighted in bold. 

 

Window Size Image Tiling Translation Count PSNR RMSE SSIM UIQ 

25 
Before 45 36.112 4.269082 0.986938 0.993857 

After 35 36.18182 4.236816 0.987091 0.993931 

50 
Before 49 36.11188 4.268699 0.986938 0.993857 

After 37 36.18825 4.232218 0.987102 0.99395 

75 
Before 49 36.1124 4.268799 0.986939 0.993861 

After 44 36.17567 4.239603 0.987074 0.993924 

100 
Before 49 36.11156 4.269173 0.986939 0.99386 

After 45 36.17996 4.237314 0.98709 0.993926 
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 Thereon, in acquirement of the optimal parametric configuration for the stochastic translation 

scheme, the performance of the schematic is then stressed over the series of ten images purposed to the 

study (see Appendix O), for investigating whether the performance of the baseline model, can be 

surpassed. Like the previous engagement, however, only the scores for the average ensemble operation 

are recorded, as once more, the median operation was proven to be conflicting with the hardware 

available. For this experiment, the model once again processes full-size Sentinel-2 tiles (10,980 x 

10,980 pixels) evaluated at the lowest scale (80→40m GSD). In addition to this experiment, the size 

and scale invariance of this strategy is then also examined, such that each of the ten images purposed, 

are then processed by the model at half of their original size (5,490 x 5,490 pixels) and evaluated at 

both 80→40m and 40→20m scales, respectively. To perform 40→20m up-sampling with the hardware 

constraints imposed, this work appropriates half-size crops of the Sentinel-2 tiles, in response to the 

hardware failures experienced, upon attempting to process their full-size counterparts. 

 

 

Table 4: Quantitative results for 80→40m GSD, representing the performance of the optimal configuration for the stochastic 

translation scheme, when used in isolation. The results are averaged across the ten images appointed to this study, at their 

full-size; the best are highlighted in bold. 

 
Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 11.6779 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.6322 4.1068 0.9874 0.9898 0.0367 

 

 

  Aligned with the first of the three experiments mentioned, the results contained by the table 

above strongly indicate the superiority of using the augmentation strategy, in comparison to the baseline 

methods. Where for all IQA metrics discerned, the augmented model yields better performance, 

confirming that an improved reconstruction accuracy can be achieved; despite being an insignificant 

enhancement. In which the ensemble predictions generated by the augmented model, are determined to 

resemble the ground truth data more closely, from a quantitative perspective. Thus, in lower-scaled 

evaluation settings (80→40m GSD), the stochastic translation scheme, in isolation, can be used to yield 

spatial improvements for MS satellite imaging. 

 

 

Table 5: Quantitative results for 80→40m GSD, representing the performance of the optimal configuration for the stochastic 

translation scheme, when used in isolation. The results are averaged across the ten images appointed to this study, at half of 

their original size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 28.3373 10.2637 0.9181 0.9784 0.1822 

DSen2 35.1793 4.6529 0.9865 0.9849 0.0393 

DSen2+ 35.3839 4.5435 0.9869 0.9851 0.0385 

 

 

  Corresponding to the second of the three experiments identified, as shown in the table above, a 

similar correlation in the results is observed. Whereby, the augmented model again, proves to 

outperform both reference methods, across all featured IQA measures. Respectively, from cross-

examining each of the two scenarios results, one can infer that the strategy is in fact size invariant for 

the same up-sampling factor, given the similar margins of improvement achieved over the baseline 

model. As such, the following scenarios results can in retrospect, be representative of the performance 
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of this strategy, if the full-size tile images could also be augmented, at the higher evaluation scale 

studied (40→20m). 

 

 

Table 6: Quantitative results for 40→20m GSD, representing the performance of the optimal configuration for the stochastic 

translation scheme, when used in isolation. The results are averaged across the ten images appointed to this study, at half of 

their original size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.3859 9.1134 0.9214 0.9738 0.1702 

DSen2 40.19 2.6513 0.9907 0.9817 0.0232 

DSen2+ 40.1841 2.6534 0.9907 0.9816 0.0232 

 

 

  Unlike the results obtained for the two experiments prior, the last of the three experiments 

conducted, defers from the same narrative. Where in accordance with the results tabularised above, the 

baseline mode outperforms the proposed variant, in the 40→20m evaluation setting investigated; as is 

understood from the PSNR, RMSE, and UIQ metrics. Reflected by the IQA measures listed, the 

proposals inferior performance is assumed to be the cause of an increased articulation of noise and 

artifact features, in the ensemble reconstructions. Which the authors of [41] explain as being the 

consequence of averaging “several images”, that can in “some cases”, blur texture detailing. They too, 

report “slightly lower metrics” in their work, in compliance with a similar TTA strategy. Thus, one can 

conclude that the stochastic translation scheme does not yield spatial improvements, when exposed to 

higher-scaled evaluation settings. That due to the ensemble of images, denies this strategy from being 

scale invariant. 

 

 

5.1.2 Geometric Self-ensemble 

 

 Advancing from the experimentation led for the stochastic translation scheme, the optimal 

configuration for the geometric self-ensemble strategy is then studied. Like the experiments conducted 

for the testbed prior, a series of trials are put forth initially, for examining the implications of 

transforming images, before and after they are decomposed into smaller tiles. For this collection of 

experiments, the same three image set is repurposed from a previously led investigation (see Figure 

31), for acquiring credible results. Also, the model likewise processes full-size tiles (10,980 x 10,980 

pixels) evaluated at the lowest scale (80→40m GSD), as was proposed for the preliminary 

investigations of the stochastic translation scheme. In which, the experiments also neglect 

considerations for the median ensemble operation, where instead, the results are only shown for the 

averaged outcome; the optimal ensemble operation is then later studied, in the experiments that follow. 

For the purpose of these experiments, the geometric self-ensemble strategy adopts the configuration 

that is articulated with in [211], as its preliminary configurative state, in providing consistent 

quantitative comparisons (see Figure 29). 

 

 

Table 7: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, when used in 

isolation and when the input data is augmented before tiling. The results are averaged across the three images appointed to 

this experiment, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 
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Bicubic 29.13167 9.439333 0.914667 0.986 0.099667 

DSen2 35.95233 4.350333 0.986667 0.993667 0.045 

DSen2+ 36.28667 4.181667 0.987333 0.994 0.043333 

 

 

  With reference to the results displayed in the tables above and below, firstly, it is evidenced 

that the geometric self-ensemble strategy provides positive implications on the model’s performance, 

in the 80→40m evaluation setting considered; regardless of the sequence in which the tiling and 

transformation operations are staged in. Such that for all IQA metrics, the augmented model surpasses 

both reference methods by a margin greater than what the stochastic translation scheme was able to 

achieve, for the same series of images (see Table 3) and in the same evaluation setting. As well, one 

can acknowledge that the equivalence of each experiments results, indicates that the order in which the 

operations are staged in, bares no impact on the peak spatial resolution that the augmented model can 

attain. Where unlike the stochastic translation scheme, geometric self-ensemble is not determined to 

have an optimal sequence of operations. 

 

 

Table 8: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, when used in 

isolation and when the input data is augmented after tiling. The results are averaged across the three images appointed to this 

experiment, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.13167 9.439333 0.914667 0.986 0.099667 

DSen2 35.95233 4.350333 0.986667 0.993667 0.045 

DSen2+ 36.28667 4.181667 0.987333 0.994 0.043333 

 

 

  Thereon, the performance of geometric self-ensemble is then examined for a broad series of 

compositional alterations, dictating the amount and types of transformation constraints, that the strategy 

is deployed with. In doing so, this work explores configurative states beyond of what is formulated in 

the current literature [211]. To accommodate this investigation, a series of experiments are proposed to 

address the following sequence of transformation composites: original + seven augmentations (as seen 

in [211]), original + three rotations, original + horizontal and vertical flips, and the original + a blend 

of the three rotations and the two flips (in order). For the transformation types listed, this work refers to 

use of the constraints featured in [211] (see Figure 29), that cater for all combinations of geometric 

transformation, whilst enabling all pixel data to remain within the boundaries of an image’s canvas 

space. To attain reliable results, this series of experiments repurposes the same ten image collection as 

they shown in Figure 31, which are processed by the model as full-size tiles (10,980 x 10,980 pixels), 

evaluated at the lowest scale (80→40m GSD). Then, for the configuration presented in [211] only, the 

operation used to derive the ensemble output of the model is studied, where the optimum of the two in 

the experiment, is then applied to the following configurations tested. As well, the scale invariance of 

this configuration is then also examined, such that each of the ten images purposed, are then processed 

by the model at half of their original size (5,490 x 5,490 pixels) and evaluated in the 40→20m setting, 

respectively. 

 

 

Table 9: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + seven augmentation’ configuration is applied, and the ensemble output is obtained via the average. The results 

are averaged across the ten images appointed to this study, at their full-size; the best are highlighted in bold. 

 



58 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.7528 4.0455 0.9876 0.9898 0.0361 

 

 

  Corresponding to the results displayed in the table above, one can infer from all IQA metrics 

that the augmented model outperforms the baseline and reference models, drastically, in the 80→40m 

setting. As was similarly recorded in the experiments prior, where the strategy adopts the same ‘original 

+ seven augmentation’ configuration. Undoubtedly, geometric self-ensemble proves to yield superior 

performance gains, compared to the stochastic translation scheme. As this experiment and the two that 

precede it, authenticates. 

 

 

Table 10: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + seven augmentation’ configuration is applied, and the ensemble output is obtained via the median. The results 

are averaged across the ten images appointed to this study, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.6995 4.0725 0.9875 0.9898 0.0365 

 

 

  Thereon, for the same composite of transformations deployed by the strategy, the results, as 

they are populated in Table 10, demonstrate the performance gains achieved when ensemble images are 

derived from averaging operations, compared to their median-derived counterparts. In which all IQA 

metrics, except UIQ, support this observation in lower-scaled evaluation settings (80→40m GSD). As 

a result of this discovery, each configuration deployed by the strategy in the following experiments, 

produces an averaged aggregate of its image transforms. 

 

 

Table 11: Quantitative results for 40→20m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + seven augmentation’ configuration is applied, and the ensemble output is obtained via the average. The results 

are averaged across the ten images appointed to this study, at half of their original size; the best are highlighted in bold. 

 
Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.3859 9.1134 0.9214 0.9738 0.0784 

DSen2 40.19 2.6513 0.9907 0.9817 0.0232 

DSen2+ 40.2002 2.6491 0.9907 0.9815 0.0232 

 

 

  Following from the configuration settled in the experiment prior, the results obtained in the 

highest evaluation setting (40→20m), inform that the augmented model is still, able to surpass the 

performance of both reference methods. Where aligned with the IQA metrics featured above, one can 

appreciate that the strategy enriches the spatial-spectral information of the ensemble images, relative to 

the RMSE, PSNR, and UIQ assessments; unlike the stochastic translation scheme, which instead, 

negated the outcomes of this same experiment previously. Providing that the performance gains of the 

strategy are trivial in comparison to the results acquired in the 80→40m setting, this experiment renders 

geometric self-ensemble scale variant, alike the stochastic translation scheme. 
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Table 12: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + three rotations’ configuration is applied, and the ensemble output is obtained via the average. The results are 

averaged across the ten images appointed to this study, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.6628 4.089 0.9875 0.9898 0.0366 

 

 

  Aligned with the results obtained for the ‘original + three rotations’ composite, one can easily 

identify the performative degradation of the strategy, compared to its predecessor configuration. Despite 

this defect however, in the lowest evaluation setting, the proposed model remains to demonstrate 

superior performance gains over the baseline method. As is validated by all IQA metrics. 

 

 

Table 13: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + horizontal and vertical flips’ configuration is applied, and the ensemble output is obtained via the average. 

The results are averaged across the ten images appointed to this study, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.6587 4.0909 0.9874 0.9898 0.0366 

 

 

  Similarly, for the ‘original + horizontal and vertical flips’ composite proposed, the results 

indicate that the strategy experiences further degradations to its performance, upon being deployed in 

the 40→20m evaluation setting. Nevertheless, the augmented model proves to surpass the performance 

of the reference methods, yet again. As is showcased by the IQA metrics, presented in the table above. 

 

 

Table 14: Quantitative results for 80→40m GSD, representing the performance of geometric self-ensemble, in isolation, when 

the ‘original + a blend of the three rotations and the two flips’ configuration is applied, and the ensemble output is obtained 

via the average. The results are averaged across the ten images appointed to this study, at their full-size; the best are 

highlighted in bold. 

 
Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.7081 4.0684 0.9875 0.9898 0.0364 

 

 

  Unlike the previous two transformation composites deployed in this investigation, the ‘original 

+ a blend of the three rotations and the two flips’ complex, yields performance enhancements over both 

reference models, that are more closely aligned with the original configuration trialled. In which, the 

strategy once again proves to dominate all IQA’s, in the lowest evaluation setting, as can be inferred 

from the results recorded in the table above. As the last configurative state investigated for the series 

proposed, this work identifies the original schematic, proposed in [211], as the optimum composite for 
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geometric self-ensemble. Which is provably superior to the stochastic translation scheme, in isolation, 

for spatially enhancing MS satellite imaging, beyond the capability of the baseline model. 

 

 

5.1.3 Policy Amalgamation 

 

Lastly, progressing on from the isolated studies of geometric self-ensemble and the stochastic 

translation scheme, this work then proposes to identify the performance implications of a consolidated 

transformation policy, from discovering each strategies optimal configuration. For this investigation, 

two experiments are put forth to examine the scale invariance of the strategy proposed, in both 80→40m 

and 40→20m evaluation settings, respectively. As previously recycled in other experiments, the ten-

image series used to derive the optimum configuration of each strategy, is retargeted for this 

investigations purposes as well. Given that quantitative comparisons between the strategies proposed 

for the study, are necessary, in determination of the superior configuration, that this work submits. 

 

 

Table 15: Quantitative results for 80→40m GSD, representing the performance of the consolidated transformation policy. 

The results are averaged across the ten images appointed to this this, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.6177 9.292 0.9188 0.9828 0.0837 

DSen2 36.4247 4.2073 0.9867 0.9895 0.0376 

DSen2+ 36.7137 4.0674 0.9875 0.9898 0.0365 

 

 

  With reference to the results obtained, as they are displayed in the tables above and below, it is 

proven that the consolidated strategy provides positive implications on the model’s performance, in 

both evaluation settings studied. Such that the strategy improves upon both reference methods, in 

correspondence with the IQA metrics compiled. However, in the 80→40m setting, the performance of 

the policy advances significantly, from its performance in the higher, 40→20m setting. As within Table 

16, the baseline model shares the same reconstruction accuracy as the proposed method, relative to an 

image’s structural similarity. Whereas within Table 15, the proposed method instead yields a noticeably 

higher reconstruction accuracy by comparison. This correlation is assumed to be the result of detail 

smoothing in the higher setting, which as previously mentioned, can occur from deriving the ensemble 

output for several images. As such, the consolidated policy is declared scale variant. Moreover, in 

comparison to the results populated in Tables 4 and 9 for the 80→40m setting, one can conclude that 

geometric self-ensemble, when used in isolation, is the performatively optimal strategy. Meanwhile, in 

the 40→20m setting, the results shown in Tables 6 and 11 identify that the consolidated policy, is in 

fact, the optimal strategy. Where in either evaluation setting, the stochastic translation scheme is 

performatively inferior, when used in isolation. 

 

 

Table 16: Quantitative results for 80→40m GSD, representing the performance of the consolidated transformation policy. 

The results are averaged across the ten images appointed to this this, at their full-size; the best are highlighted in bold. 

 

Method PSNR RMSE SSIM UIQ SAM 

Bicubic 29.3859 9.1134 0.9214 0.9738 0.0784 

DSen2 40.19 2.6513 0.9907 0.9817 0.0232 

DSen2+ 40.2008 2.6489 0.9907 0.9815 0.0232 
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5.2 Discussion 

 

  Advancing from the quantitative analysis submitted for the results obtained throughout the 

study, the discoveries of this work are then evaluated against the hypotheses originally put forth for its 

commission. To reiterate, this work proposes to answer the following matters: 

 

• Can state-of-the-art data augmentation techniques be applied to state-of-the-art deep 

learning super-resolution models, to further advance the spatial resolution exhibited by 

Sentinel-2 satellite imagery? 

• To what extent, if any, does a combinative use-case of state-of-the-art data augmentation 

techniques have on enhancing the spatial resolution of Sentinel-2 satellite imagery? 

• If a state-of-the-art deep learning model incorporates image granulation into its approach 

to super-resolution, does the sequence in which data augmentation techniques are applied 

and that the images are decomposed, impact the peak spatial resolution attainable by the 

super-resolution model? 

 

  In summary of the quantitative observations obtained, this work strongly evidences that the 

reconstruction accuracy of DL SR models can be enhanced, using DA techniques at the time of 

inference. Such that the two state-of-the-arts identified in the literature review, demonstrate consistent 

performance gains over the baseline and reference methods purposed. Validated by the series of IQA 

measures featured in this study, the optimal configurations established for the techniques prove to 

consistently yield spatial enhancements for MS satellite image restorations; especially in the lowest 

evaluation setting studied. In which, geometric self-ensemble is identified as the candidate technique, 

relative to the greatest performance gains observed, closely followed by the combined strategy that this 

study engineers, and then the stochastic translation scheme thereafter. As such, the combined use-case 

of the two strategies studied, demonstrates a sub-optimal performance in comparison to geometric self-

ensemble, when it used in isolation. However, the performance gains reported by the amalgamation of 

the two techniques, are well-respected, when considering the fidelity of the image series utilised. 

Thereon, when articulating the optimal configuration for either strategy, it was then observed that the 

order in which the image decomposition and the geometric transformation operations are staged in, 

posed no effect on the peak spatial resolution that the augmented model could attain, when geometric 

self-ensemble was invocated. Whereas for the stochastic translation scheme, this narrative was not 

upheld, as translating the input image data before it was tiled, was proven to yield better reconstruction 

accuracies in comparison to the alternate sequence of operations. 

 

  Given the performance implications of the strategies identified, this work submits three possible 

solutions for inexpensively enhancing the reconstruction accuracy of example-based DL models, 

tailored to the SR of MS satellite imaging. As such, this work puts forth geometric self-ensemble as the 

superior augmentation strategy, as it is articulated in [211], for use with other RS applications that 

operate with MS imagery. However, hindering the confidence of this suggestion, is this limited scope 

of experimentation conducted, for the means of hardware available to the study. In which, the results 

are only representative of 2x up-sampling, for the B5, B6, and B7 band composites of Sentinel-2 

imagery, in the 80→40m and 40→20m evaluation settings synthesised. To eliminate this burden, a 

series of future work would be necessary to trial the strategies recommended by this study, with 60m 

band composites, alternate 20m band composites, and various other scales and ranges of evaluation 

setting. Though, works of this kind go beyond the scope of this research. Which aims to reveal the 
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feasibility of achieving spatial enhancements, cheaply, in support of more detailed and accurate 

information extraction, of lower-resolution satellite imaging. As the discoveries of this work are 

believed to demonstrate.  

 

 

Chapter 6 | Conclusion 
 

6.1 Research Summary 

 

 In this paper, multiple strategies are presented for spatially enhancing the lower-resolution band 

composites, of Sentinel-2 imagery. Of the three strategies that this work presents, geometric self-

ensemble, on average, is performatively superior to both the stochastic translation scheme, adopted 

from [61], and the consolidation of the two strategies, that this work establishes. Wherein, the study 

also identifies optimal configurations for either strategy, in isolation, that are proposed to be used with 

other RS applications that regulate MS imagery. Relevant to this study’s objectives, this research 

identifies that example-based SR models, specifically, can adopt the use of DA techniques at test-time, 

to advance the spatial resolution that they can achieve, in their LR-HR mapping reconstructions. As 

well, this work illustrates that a combinative use-case of the two strategies identified, promises 

performance gains over the baseline and reference methods purposed to the study. Such that it 

outperforms the stochastic translation scheme, in isolation, as well. Lastly, the configurations submitted 

for each of the strategies, identify that the sequence in which data augmentation techniques are applied 

and that the input image data is decomposed, can impact the peak spatial resolution attainable by an 

augmented model. As is presented for the stochastic translation scheme, only. With the limited 

experimentation conducted for this study aside, from the quantitative results that were obtained, this 

work proves to provide a novel contribution to the SISR domain, respective of RS interests.  

 

 

6.4 Future Work 

 

  Suggested as future work for this study, it would be beneficial to investigate the lowest 

resolution band composites of Sentinel-2 data, which are sampled from a 60m GSD, in acquirement of 

more credible outcomes for the strategies and their configurations, like they are presented here. 

Moreover, with regards to the augmentation strategies themselves, the fidelity of the geometric self-

ensemble trials could be investigated further, to consider additional transformation counts and 

constraints, that were not considered in the respective literature. As such, one would be investigating 

the performance implications of other existing, geometric transformations. Expanding from the 

investigations already led, per-band analysis could also be considered, in identifying the spectral 

correlations between the strategies deployed. And lastly, the performance implications of the strategies 

could be investigated for the lowest resolution satellite images, publicly available, as well. In more 

accurately acknowledging each strategies contribution to historical data analysis. 

 

 

Chapter 7 | Critical Appraisal 
 

7.1 Development Approach 
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  Aligned with this works adherence to the hypotheses formulated, it is without doubt, that an 

adequate number of experiments were formulated, to enable each study aim to be acknowledged, in 

confidence. However, as originally proposed for this study, both lower-resolution band composites were 

intended to be exposed to augmentation, at the 20m and 60m GSD’s. Such that the evaluation of the 

augmented strategies would have been conducted in the 40→20m and 360→60m settings, respectively, 

aligned with [18]. Given the hardware constraints posed on the study, however, the 60m bands could 

not be super-resolved due to the processing expense incurred by DSen2’s approach to tile 

decomposition. Where instead, this study only investigated the augmentation of the B5, B6, and B7, 

20m band composite, to address the hypotheses put forth. In which, evaluation was performed in both 

80→40m and 40→20m settings, alternatively, as the DSen2 model was already trained at this scale, for 

the purposes of the authors own investigations. Thus, it is believed that this issue was alleviated 

accordingly. However, the results obtained for the experiments conducted, could then only be indicative 

of the lower-resolution bands, absent from the study; as this work makes references to, throughout. 

Nonetheless, this deviation from the original plan, led to the addressal of the hypotheses in question. 

 

 

7.2 Development Adherence 

 

 Aligned with the study’s development plan, disguised as the projects management schematic, 

the adherence to the plan is upon itself, deserving of recognition. As outlined in the proposal for the 

work presented, it was expected that a literature study was conducted, a model was configured and then 

extended, and a quantitative analysis of the data accumulated was delivered, in a timely fashion. Each 

of which, alongside this very document, comprises the underlying work packages of this study. In 

correspondence with the projects management schematic (see Figure 32), as it was recorded live 

throughout the study’s undertaking, one can acknowledge that all work packages were delivered within 

an appropriate duration. As well, one can infer that the distribution of time was appropriately conceived. 

 

 

 
 
Figure 32: Visualisation of the projects management schematic, recorded live, in the format of a Gantt chart. 
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7.3 Academic Advancement 

 

 From undertaking this study, a plethora of knowledge has been acquired, over the course of the 

works research and development cycles. Most of which has surfaced from the research conducted into 

the concepts surrounding remote sensing, multispectral imagery, data augmentation, deep learning, and 

super resolution. As well as when conducting the literature study, in identifying the state-of-the-arts 

purposed for the investigations of this work. Aside from the accumulation of knowledge, time-keeping 

has also been exercised as an interpersonal competence, throughout this development, and as such, has 

evolved to a stricter adherence. 
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Figure 33: Depiction of the min-max contrast stretching method implemented within the 's2_tiles_supres.py' Python script file, 

devoted to both single-band and multi-band image contrast stretching. 

 

 

 
 

Figure 34: Depiction of the min-max contrast stretching method implemented within the ‘supres.py' Python script file, devoted 

to multi-band image contrast stretching only. 
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Figure 35: Depiction of the ‘write_band_data’ method implemented within the 's2_tiles_supres.py' Python script file, devoted 

to generating GeoTIFF representations of Sentinel-2 spectral band composites. 

 

 

 
 

Figure 36: Depiction of the extended use-case of the ‘write_band_data’ method, located within the 's2_tiles_supres.py' Python 

script file. Generating three separate GeoTIFF representations of the ground truth, bicubically interpolated, and super-

resolved Sentinel-2 spectral band composites. 
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Figure 37: Depiction of the ‘downPixelAggr’ method implemented within the ‘patches.py' Python script file, devoted to 

generating down-sampled renditions of Sentinel-2 image tiles. 

 

 

Appendix E: 

 

 
 

Figure 38: Depiction of the extended use-case of the ‘downPixelAggr’ method, located in the ‘patches.py' Python script file. 

Generating down-sampled renditions of the ground truth, bicubically interpolated, and super-resolved Sentinel-2 image tiles. 
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Figure 39: Depiction of the ‘rotate_image’ method implemented within the ‘supres.py' Python script file, devoted to generating 

rotary offset transformations of Sentinel-2 image tiles. 

 

 

 
 

Figure 40: Depiction of the ‘invert_image’ method implemented within the ‘supres.py' Python script file, devoted to generating 

inverted transformations of Sentinel-2 image tiles. 
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Figure 41: Depiction of the ‘rotate_invert_image’ method implemented within the ‘supres.py' Python script file, devoted to 

generating rotary offset and inverted transformations of Sentinel-2 image tiles. 
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Figure 42: Depiction of the rotation, inversion, and the rotation + inversion transformation constraints, defined in the 

‘DSen2_20’ method that is implemented within the ‘supres.py' Python script file. 
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Figure 43: Depiction of the ‘translate_image’ method implemented within the ‘supres.py' Python script file, devoted to 

generating positionally offset transformations of Sentinel-2 image tiles. 
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Figure 44: Depiction of the ‘define_translation_constraints’ method implemented within the ‘supres.py' Python script file, 

devoted to populating the transformation constraints used by the stochastic translation scheme. 

 

 

Appendix J: 

 



98 

 

 
 

Figure 45: Depiction of the translation transformation constraints, defined in the ‘DSen2_20’ method that is implemented 

within the ‘supres.py' Python script file. Demonstrating a method-guided approach to their population. 
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Figure 46: Depiction of the stochastic translation scheme testbed, implemented within the ‘supres.py' Python script file. Code 

sample 1 of 4. 
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Figure 47: Depiction of the stochastic translation scheme testbed, implemented within the ‘supres.py' Python script file. Code 

sample 2 of 4. 

 

 

 
 

Figure 48: Depiction of the stochastic translation scheme testbed, implemented within the ‘supres.py' Python script file. 

Code sample 3 of 4. 
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Figure 49: Depiction of the stochastic translation scheme testbed, implemented within the ‘supres.py' Python script file. Code 

sample 4 of 4. 
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Figure 50: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 1 of 7. 
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Figure 51: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 2 of 7. 

 

 

 
 

Figure 52: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 3 of 7. 
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Figure 53: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 4 of 7. 

 

 

 
 

Figure 54: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 5 of 7. 
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Figure 55: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 6 of 7. 

 

 

 
 

Figure 56: Depiction of the geometric self-ensemble and the stochastic translation scheme, integrated into the DSen2 model 

framework, implemented within the ‘supres.py’ Python script file. Code sample 7 of 7. 
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Figure 57: Depiction of the ‘Super-Resolution: Image Quality Measure.ipynb’ file contents, external to the DSen2 model 

repository. Which is devoted to performing image quality assessment routines, for the results of all models bound by this study. 

Code sample 1 of 3. 
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Figure 58: Depiction of the ‘Super-Resolution: Image Quality Measure.ipynb’ file contents, external to the DSen2 model 

repository. Which is devoted to performing image quality assessment routines, for the results of all models bound by this study. 

Code sample 2 of 3. 

 

 

 
 

Figure 59: Depiction of the ‘Super-Resolution: Image Quality Measure.ipynb’ file contents, external to the DSen2 model 

repository. Which is devoted to performing image quality assessment routines, for the results of all models bound by this study. 

Code sample 3 of 3. 
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Figure 60: Depiction of the SAM metric evolution, when varying the number of translations employed by the ensemble output, 

of the stochastic translation scheme. The results represent the average values taken from the three images selected for the 

experiment (lower is better). A window size of 50 is configured. 

 

 

 
 

Figure 61: Depiction of the PSNR metric evolution, when varying the number of translations employed by the ensemble output, 

of the stochastic translation scheme. The results represent the average values taken from the three images selected for the 

experiment (higher is better). A window size of 50 is configured. 
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Figure 62: Depiction of the RMSE metric evolution, when varying the number of translations employed by the ensemble output, 

of the stochastic translation scheme. The results represent the average values taken from the three images selected for the 

experiment (lower is better). A window size of 50 is configured. 

 

 

 
 

Figure 63: Depiction of the SSIM metric evolution, when varying the number of translations employed by the ensemble output, 

of the stochastic translation scheme. The results represent the average values taken from the three images selected for the 

experiment (higher is better). A window size of 50 is configured. 
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Figure 64: Depiction of the UIQ metric evolution, when varying the number of translations employed by the ensemble output, 

of the stochastic translation scheme. The results represent the average values taken from the three images selected for the 

experiment (higher is better). A window size of 50 is configured. 
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Figure 65: Depiction of all ten Sentinel-2 tile images, of size: 10,980 x 10,980 pixels, elected for the wealth of the study’s 

investigations. 

 

 


