
Artificial Intelligence Report Adam Hubble and Josh Howitt

Tank War
 Product Owner SCRUM Master

Adam Hubble Josh Howitt

Team Members

Alfie Horton Joseph Hill

Artificial Intelligence Report Adam Hubble and Josh Howitt

Software Design Decisions

A* search

Acknowledging all the path finding techniques that could be used, we had chosen to primarily
implement A* search, believing it to be the most accurate and able to calculate the shortest path, as
a guided search method which equips a heuristic function. In knowing of heuristic function
capabilities, of being able to calculate an estimate of the minimum cost between a starting and end
(goal) node, via ranking and the creation of alternative paths at every branch step; prevails our
understanding of fewer nodes needing to be visited to reach the goal node. From such, we
envisioned a more challenging opponent to the player with the implementation of the A* search
technique. From which we had assumed that the bot tank would exhibit behaviours that seemed
more ‘player-like’ and often in comparison to the other graph search techniques, this is from
knowing the efficiency of the paths it calculates. Alike the player, the bot tank would attempt to
traverse the shortest distances to reach an objective in view and therefore would assume to have
more frequent encounters with its objectives; each encounter would determine the presented
behaviour(s) of the tank. In summary, we had hoped of presenting a more challenging opponent to
the player from its use.

Moreover, our initial heuristic function selected was Euclidean without square root, this was due to
its ease of implementation and speed which was apparent due to a low demand for computational
processing; the exclusion of a square root function enables this. But, alongside the exclusion of the
square root function we had also accepted the possible compromise of accuracy as a result of its
‘trade-off’ for speed; however, our findings determined that there was no significant difference in
accuracy between the other Euclidean (with square root) and Manhattan Heuristic functions.
Collectively, we concluded that A* search in conjunction with the Euclidean without square root
function, was the most suited and therefore most advantageous for our project, and that the project
was more speed orientated as opposed to accuracy given its flat terrain concept.

Depth-first Search (DFS)

Additional to A* search, Depth-first Search (DFS) has been implemented as a technique being one of
“several different AI techniques” in accordance to the assignment specification; it is necessary to
include several techniques to determine the best path finding algorithm. Given this context, its
implementation (comment blocked) purposes as a comparative technique to the A* search query,
which serves as our pre-eminent technique. Acknowledging the capabilities of Depth-first Search,
the technique requires less time to calculate pathing in comparison to A* search. However, Depth-
first Search proves to traverse (visit) many more nodes, in order to reach the goal node of the path
calculated, which undoubtedly hinders the tanks behaviours as an opponent. Moreover, in relation
to the expense of time used to calculate paths, the difference between A* search isn’t significant in
comparison, but due to DFS’s compromise for path efficiency (accuracy) and sometimes inability to
even create paths, disadvantages the technique when compared to A* search.

Breadth-first Search (BFS)

Alongside the A* search and Depth-first Search (DFS) techniques, Breadth-first Search (BFS) has also
been implemented within the program code, as another instance of “several different AI
techniques” used. As mentioned within the project management documentation, its implementation
was only purposed for providing a comparison between the other existing techniques, from which
we are able to determine the better technique for the bot tank and its behaviours to perform as an
opponent. Regarding the capability of BFS, the method alike DFS requires less time to calculate paths

Artificial Intelligence Report Adam Hubble and Josh Howitt

in comparison to A* search. But unlike DFS, BFS traverses (visit) fewer nodes in order to reach the
goal node of the path calculated. This is comparing to DFS, whereas A* search traverses within the
same number of nodes as BFS, but the path takes longer to be traversed. Similarly to the results seen
between the A* search and DFS methods, A* search once again utilises more time to calculate paths,
but the difference relative to calculation is too insignificant to be noticed in real-time execution.
Alike DFS, BFS is also disadvantaged by its compromise for path efficiency (accuracy), and so
summarises A* search to be the superior path finding algorithm.

Finite State Machine (FSM)

In extension to the numerous pathfinding techniques implemented within the project program, a
series of Finite State Machines have been incorporated to govern the behaviours of the bot tank; in
which each state of both state machines has a unique behaviour associated and are performed
based on given conditions. Conditions determine the states that are being transitioned to and from,
which are relative to the types of stimuli inside of the tank’s proximity and its attributes; the
conditions operate as virtual sensing capabilities to the tank. Furthermore, the FSM’s partially
conform to a hierarchical arrangement in focus of their states and sub-states; this is presented by
the prioritisation of states that has been used to provide scalability across the FSM’s. Prioritisation is
managed by a series of standalone or nested ‘if else’ statements, containing Boolean conditions. All
of such are components which make up the conditions used to determine the tanks state(s).

Acknowledging the ease of implementation and adjustment of a Finite State Machine, we had
chosen to adopt FSM’s to accommodate our needs for being able to implement path finding
techniques with ease. In correlation of its use, aspects of debugging have been made simpler also,
the application of states has enabled the isolation of problems, quickening problem resolution in
result. To note, system performance also promises stability from its use, this is simply due to the low
computational overhead which Finite State Machine’s incur.

Moreover, the FSM’s have two core capabilities, one to alternate movement behaviours of the bot
tank; the other to alternate its mounted turret behaviours. Relative to movement, some of the
behaviours include ‘searching’, ‘following’ and ‘stopping’; meanwhile turret behaviours involve
‘searching aim’ and ‘aiming’. All states are performed in conjunction with the A* search technique,
and wholesomely act as a thought process for the bot tank, which configures a challenging opponent
to the player. Without doubt, our inclusion of FSM’s has hastened our project completion as well as
enabled desirable functionality/ the maintainability of program code. Thus, we conclude our use for
Finite State Machines to be a sensible software design decision.

Implementation of Program Functionality

Regarding the implementation of program functionality, three additional classes were created to
enable the path finding, behaviours and sensual awareness of the bot tank. Initially, we had created
the ‘map’ and ‘mapNode’ classes. For which were used to calculate paths for the bot tank, when
using different path finding algorithms; an exampling method being the A* search query.
Additionally made to these classes was the ‘newTank’ class, which contains the Finite State
Machines and methods for calculating the values each FSM uses. All of such enables the bot tank to
exhibit behaviours depending on its transitioned-to-state, which is based upon the objects that the
tank senses around itself in addition to the values of each class variable.

Throughout the development process of the project, we had progressively approached problem
resolution and or the overcoming of program errors. In the first instance, we had focused on
achieving the bot tanks turret to aim at every objective in the map space, whist preserving the

Artificial Intelligence Report Adam Hubble and Josh Howitt

movement functionality from the ‘DumbTank’ class. We had approached such by comparing the
difference in position between the bot tank and the closest objective to it in the map space, and
then further calculating the angle between the bot tank and objective. This was calculated from the
vector distance between the closest objective and the bot tank, via the ‘calcAngle()’ method.

Later, we had initiated the implementation of the A* search technique, in attempt to replace the
‘DumbTank’ movement with pathfinding to a given goal node. Proceeding its implementation, we
had then focused upon the Finite State Machines, which was used to alternate the goal node that
the A* search query created a path towards. This was relative to the conditions controlling the
transition between the states of the bot tank. In doing so, has enabled the bot tank to exhibit several
behaviours that places the tank in more advantageous positions, situationally. Furthermore, the
turret of the bot tank has been configured to aim towards its relative objective (that’s closest) and
search around itself; this is dependent on its weapon state. As previously mentioned, we had
progressively tested and bug-fixed the program, this had consumed a significant amount of time
throughout the program’s development, especially as we were unable to alter any of the existing
functionality, we could only add or replace functionality where eligible.

However, summarising our program functionality, we were able to implement all our targeted
pathing techniques, which were the A* search and DFS methods and additionally were able to
implement the BFS algorithm. From which, we have concluded that the A* search query calculates
the shortest path to the goal node from its use of a heuristic function, when instructed by the FSM’s,
instigating it to be the most appropriate algorithm for the bot tank. Opposingly, BFS reveals to
calculate paths that are not entirely efficient for speed, as the paths calculated were not always the
shortest possible path to each goal node. However, it posed a similar degree of accuracy to A*
search than DFS. Of which, DFS calculated paths that were unnecessarily longer in terms of the
number of nodes traversed, which made the bot tank much easier to defeat; the bot tank took
longer to discover objectives to destruct, and the paths calculated after entering new behavioural
states often caused the tank to rotate around in the opposite direction, this occurred when tank has
partially destroyed a player base.

Testing Regime

Throughout our project, program code has been progressively tested in the form of test-driven
development, having been conducted in such way, has ensured the discovery and further removal of
any found bugs; we have used a series of tests (see below) to accomplish this. In accordance to the
specification, we wanted to provide program functionality at an advanced level where no “flaws” or
“significant flaws” were apparent and believe that the continuity of Smoke, Blackbox, Unit and
performance profile testing has achieved this.

In the acknowledgement of testing, as a group we had recognised testing to be significant in the
attempts of achieving proper program functionality; a successful program build. This ideal was based
upon our other concurrent module ‘Advanced Object-Orientated Programming in C++’, from which
we adopted the skills used to conduct and construct the tests, for this regime. Thereby the
deliverable program code, should show to be error-free and be playable from a performance
perspective. Which in context of the player tank, will present a stable and proficient opponent.

Testing [Smoke testing]

Given our understanding of the types of program tests, we had purposed Smoke testing to
determine ‘window’ controlled events alike the opening, closing and updating state of the program
window; simply Smoke testing has been used to demonstrate the programs working, upon program

Artificial Intelligence Report Adam Hubble and Josh Howitt

execution (compilation), during program runtime and at the point of program termination. We have
nominated this test method to investigate whether any of the functionality additional to the pre-
existing functionality provided, has encouraged the program to encounter errors or perform
differently to our expectations during these events.

Case Summary Process Actual result(s) Expected result(s) Passed?

1 Window opens upon
being compiled and
executed.

Build the project solution and execute (CTRL + F5). Window opens upon
program execution. No
errors.

Render window opens
error-free, continues to
execute program.

2 Window renders all
object; program is in
playable state.

Wait for console window and render window to
appear from program execution, observe for images
and colouring drawn to window.

All objects are drawn to
the render window.

All objects drawn to
render window.

3 Debug draw mode can
be toggled during
program runtime.

Program processes key pressed ‘TAB’, revealing all
objects in render window space.

Debug draw mode can
be toggle continuously
during program runtime.

Debug draw mode can
be toggled throughout
program runtime.

4 Window processes
changes within objects
(updates) during
runtime.

Tank objects move in the relative window space
upon processing keyboard input or pathing
technique. Tank objects rotation and position
updates (visual changes since execution).

Tank objects update
continually, relative to
keyboard input and
pathing technique.

Tank objects position
and rotation changes,
accordingly to key input
or pathing technique.

5 Window renders game
over state with text
before program end.

All enemy bases destroyed, or all players’
ammunition is depleted, text object overlays existing
objects in render window.

Text object overlays
render window when
conditions are met.

Text object overlays all
object existing in current
render window view.

6 Window closes upon
being exited/ game
completion.

Navigate to close window icon in corner of render
window (ESC).

Window closes upon
termination. No errors.

Window closes error-
free, returning to
application code.

From our findings, our program functionality has maintained the working order of the program in
context of all the window events specified. The program is proven and also experienced to have
been error-free from any unexpected program crashing before, during and ending program runtime.
Conclusively all test cases were successful.

Testing [Blackbox testing]

In further focus of testing, we had also conducted a series of Blackbox testing, for which we intended
to test for the functionality and behaviours of the bot tank. And so, we led investigations into the
relation between the Finite State Machine states, the bot tanks sensing capabilities as well as the
functionality achieved within each of its pathing techniques. To note, investigations were conducted
progressively, and were recorded within our ‘Discord’ group conversation; whereby Joseph (Tester)
and Alfie (Programmer), communicatively updated and overcame the undesired or lacking
behaviours of the bot tank.

Meanwhile, all the investigative factors mentioned within the progressive testing, are components
which determine the bot tanks behaviour(s) overtime; exhibiting desirable behaviours in the
programs deliverable state was the objective of the project. And so, we had nominated Blackbox
testing, as a method to investigate whether the bot tank exhibits such desired behaviours and
whether it performs well as an opponent (using A* search), in the programs deliverable state.

Case Summary Process Actual result(s) Expected result(s) Passed?

1 AI tank searches
randomly on the
left side of the
map for enemies if
it has reset or the
conditions for
higher priority
states are not met.

AI tank resets and no
higher priority state
conditions are met.

AI tank enters the SEARCHING state, turret
rotates constantly looking for enemies, A*
search query calculates a random path to a
random node of the left side of the map and
the AI tank follows this path.

AI tank enters the SEARCHING state, turret
rotates constantly looking for enemies, A*
search query calculates a random path to a
random node on the left side of the map
and the AI tank follows this path.

2 AI tank stops,
rotates
perpendicular to

Enemy base enters AI
tank’s vision and no

AI tank enters the STOPPED state, turret is
aimed at the base and the tank shoots at
the base, destroying it. If the AI tank is in a

AI tank enters the STOPPED state, turret is
aimed at the base and the tank shoots at
the base, destroying it. If the AI tank is in a

Artificial Intelligence Report Adam Hubble and Josh Howitt

and then shoots
enemy base when
it’s in view.

higher priority state
conditions are met.

higher priority state, the STOPPED state
won’t be entered.

higher priority state, the STOPPED state
won’t be entered.

3 AI tank stops,
rotates
perpendicular to
and then shoots
enemy tank when
it’s in view.

Enemy tank enters AI
tank’s vision and no
higher priority state
conditions are met.

AI tank enters the STOPPED state, turret is
aimed at the enemy tank, tank rotates
perpendicular from the enemy tank and the
AI tank shoots at the enemy tank,
destroying it. A* search query calculates a
path to the enemy object’s position, which
will be used for the FOLLOWING state. If the
AI tank is in a higher priority state, the
STOPPED state won’t be entered.

AI tank enters the STOPPED state, turret is
aimed at the enemy tank, tank rotates
perpendicular from the enemy tank and the
AI tank shoots at the enemy tank,
destroying it. A* search query calculates a
path to the enemy object’s position, which
will be used for the FOLLOWING state. If the
AI tank is in a higher priority state, the
STOPPED state won’t be entered.

4 AI tank dodges
enemy projectile if
in its path and it’s
in view.

Enemy projectile enters
AI tank’s vision, and the
nodes containing the
bounding boxes for the
path of the projectile
intersects with the AI
tank’s node.

AI tank enters the DODGING state. Tank
moves forward until it no longer sees the
projectile.

AI tank enters the DODGING state. Tank
moves forward until it no longer sees the
projectile.

5 AI tank attempts
to hide in the
corner of the map
when its
ammunition is
depleted.

AI tank’s ammo is
depleted, and no higher
priority state conditions
are met.

AI tank enters the HIDING state, A* search
query calculates a path to the closest
cornering node in the map, and the tank
follows this path, stopping once it reaches
its goal node. If the AI tank is in a higher
priority state, the HIDING state won’t be
entered.

AI tank enters the HIDING state, A* search
query calculates a path to the closest
cornering node in the map, and the tank
follows this path, stopping once it reaches
its goal node. If the AI tank is in a higher
priority state, the HIDING state won’t be
entered.

6 AI tank attempts
to escape from an
enemy tank when
one is in view and
its ammunition is
depleted.

AI tank’s ammo is
depleted, and enemy
tank enters AI tank’s
vision.

AI tank enters the ESCAPING state, A*
search query calculates a path to an
adjacent cornering node, anticlockwise to its
relative current cornering node of the map,
and the tank follows this path. If the AI tank
reaches the goal node it is escaping to, the
tank will leave the ESCAPING state and
enter the HIDING state.

AI tank enters the ESCAPING state, A*
search query calculates a path to an
adjacent cornering node, anticlockwise to its
relative current cornering node of the map,
and the tank follows this path. If the AI tank
reaches the goal node it is escaping to, the
tank will leave the ESCAPING state and
enter the HIDING state.

7 AI tank moves
towards an enemy
object that has left
its vision.

AI tank is in the
STOPPING state, no
enemy object is in the AI
tank’s vision and no
higher priority state
conditions are met.

AI tank enters the FOLLOWING state,
causing the AI tank to follow the path
calculated when in the STOPPING state. If
the AI tank is in a higher priority state, the
FOLLOWING state won’t be entered.

AI tank enters the FOLLOWING state,
causing the AI tank to follow the path
calculated when in the STOPPING state. If
the AI tank is in a higher priority state, the
FOLLOWING state won’t be entered.

8 AI tank follows a
newly calculated
path if it gets stuck
on a base or
another tank.

AI tank has not moved
for several frames when
it is supposed to be
moving.

AI tank enters the STUCK state, causing the
AI tank to calculate a new path, it then
enters another state depending on
conditions met and then follows the newly
calculated path that will go around the
object causing the AI tank to be stuck.

AI tank enters the STUCK state, causing the
AI tank to calculate a new path, it then
enters another state depending on
conditions met and then follows the newly
calculated path that will go around the
object causing the AI tank to be stuck.

9 AI tank aims at the
closest enemy
object, prioritising
enemy tanks over
bases, when one is
in view.

AI tank is in the
STOPPING state.

AI tank enters the AIMING weapon state,
calculating which enemy object is the
closest, prioritising enemy tanks. AI tank
then aims its turret towards this enemy
object.

AI tank enters the AIMING weapon state,
calculating which enemy object is the
closest, prioritising enemy tanks. AI tank
then aims its turret towards this enemy
object.

10 AI tank searches
around its body
using its turret.

AI tank is in either of the
SEARCHING, HIDING,
DODGING, FOLLOWING
or ESCAPING state.

AI tank enters the SEARCHINGAIM weapon
state, causing the turret to rotate constantly
in one direction. If the AI tank is in a higher
priority weapon state, the SEARCHINGAIM
state won’t be entered.

AI tank enters the SEARCHINGAIM weapon
state, causing the turret to rotate constantly
in one direction. If the AI tank is in a higher
priority weapon state, the SEARCHINGAIM
state won’t be entered.

Summarising our findings, the bot tank conforms to all the desired behaviours, as shown to all ‘pass’.
Whereby the tank is fully capable of searching for enemy bases and the playing tank (seek), able to
destroy the player tank as well as it’s bases upon seeing them, to dodge projectiles casted from the
player tank (avoid), to hide momentarily when its ammunition has depleted (flee), to remember and
attempt to follow the player tank and or it’s last known location (follow), to detach itself from player
bases (when stuck) enabling the tank to move once more, to prioritise the destruction of the player
tank or base relative to the distance between them and it, and to also identify all of such objectives,
via the use of the Object-Bounding Box (OBB) assigned to the tanks, nodes and casted projectiles .
All of which behaviours, are correctly transitioned to and from in accordance to their priority

Artificial Intelligence Report Adam Hubble and Josh Howitt

arrangement. Therefore, from our observations (Blackbox testing), the bot tank successfully exhibits
sensing capabilities at a sufficient level via the use of Finite State Machines and further
demonstrates error-free pathing from the use of the A* search technique. Overall, the bot tank is
successfully presented as an opponent to the player.

Testing [Unit testing]

Additionally, unit testing has been used to simplify debugging processes throughout the
development of the program. Whereby bugs were easily identifiable from the test cases that have
been setup to be refactored, which were utilised to eliminate all possible errors, in attempt to
establish a solution quicker. More so, unit testing provides the capability of testing aspects of the
program within isolation and is convenient to use regarding its small and simple code requirement
to create test cases. All of which was considered as a suitable method for testing the bot tanks
functionality, alike Blackbox testing, however, instead is within focus of the accuracy of the tank’s
behaviours. We measured this accuracy using Boolean logic and numeric driven test cases.

A priming test case is that of the bot tanks ‘dodging’ behavioural state, which is alternated based
upon its detection of Object-Bounding Box (OBB) intersection, between the bot tank and an
oncoming projectile; projectiles are casted from the player tank. The tanks sensing capability in this
given example needs to be measured, ensuring that the bot tank moves away from a projectile when
it enters ‘DodgingState’; the collision between their Object-Bounding Boxes (see below). Hence its
nomination as a test method.

Artificial Intelligence Report Adam Hubble and Josh Howitt

Providing the test case results, it is inevitable that the bot tank demonstrates functionality that is
accurate as we had configured for. In which, all the following test cases ‘passed’ and further identify
that the tank is a proficient opponent, from which all desired behaviours are exhibited. Below
outlines each test cases purpose and its simulated conditions.

Test case Test purpose

[StateMachine]
DodgingState

Simulates a player projectile being projected near the bot tank, tests if it causes the bot
tank to enter the DODGING state correctly, moving the tank out of range.

[StateMachine]
DodgingBool

Tests if Boolean variable bDodging is set correctly when a projectile is seen, this makes sure
the bot tank keeps dodging as long as it can see a player projectile after it was in its path.

[StateMachine]
SearchingReset

Simulates the tank respawning, tests if its state is reset to SEARCHING correctly, the tank
moves in search of the nearest objective.

[StateMachine]
HidingConditions

Simulates when the tanks ammunition depletes, tests if the state is set to HIDING correctly,
the tank moves to a corner of the map which the player tank is adjacent to.

[StateMachine]
EscapingConditions

Simulates when the tanks ammunition depletes and sees the player tank, tests if the state
is set to ESCAPING correctly, the tank continues to move to corners of the map adjacent to
the player tank.

[StateMachine]
StoppingConditions

Simulates when the tank sees the player tank, tests if the state is set to STOPPING
correctly, the tanks position does not change.

[StateMachine]
FollowingConditions

Simulates when the tank sees the player tank and it leaves its view for more than twenty
(20) frames, tests if the state is set to FOLLOWING correctly, the tank moves towards the
player tanks last seen location.

[Map]
NodeTraversability

Tests the map.traversable() method, ensuring that it returns true for traversable objects
(UNKNOWN, PLAYERSHELL) and returns false for non-traversable objects (OWNBASE,
PLAYERBASE, PLAYERTANK).

[Map]
SetAdjacencyMatrixTimes

Tests the setAreaTraversable() method against the setMapTraversable method() for speed,
ensuring that the setAreaTraversable() function is faster, so that it can execute whilst
playing.

[PathCalculations]
PathLength

Tests each pathfinding algorithm's path length, ensuring that the path calculated by the A*
search technique, is shorter than the path calculated by DFS, but is the same length of path
as calculated by BFS.

[PathCalculations]
PathArea

Tests each pathfinding method (A* search, DFS and BFS), ensuring A* search query
calculates the most direct and efficient path of the three, and the calculated path therefore
utilises the least area space.

[PathCalculations]
EndNotTraversable

Tests if the program correctly prevents a goal node from being in a non-traversable node,
preventing the program from unexpected crashing.

Testing [Performance profiling test]

Regarding performance profiling, to ensure the code functionality being implemented was
adequately playable, we had additionally undergone a series of performance profiling tests over the
duration of the program development. Specifically, both Central Processing Unit (CPU) and Random-
Access Memory (RAM) profile tests were conducted, both of which purposed to indicate the
consumption of computational processing and memory throughout the cycle of execution. Based
upon the results gathered throughout the project, we were further able to optimise code efficiency;
one example is when changing the adjacency matrix to make a new path, it checks only for nodes
within a specific proximity of the path start and end nodes. In result, is less time and processing
expensive in comparison to analysing the entire map, for every iteration of a new path made.
Notably, the improved adjacency matrix calculations were only applicable by the A* search
algorithm, as it computes the most direct path to the goal node and will not enable the traversing of
the bot tank in any nodes exceeding the calculated path area.

Artificial Intelligence Report Adam Hubble and Josh Howitt

Using performance profiling testing has enabled us collaboratively to understand the difference that
numerous path finding techniques has, on relative computational performance. It can further be
utilised as a measure of speed, contrasted to the accuracy of pathing each technique provides;
hence why it was another nominated method of testing.

[CPU usage] A* search:

[CPU usage] Depth-first Search:

Artificial Intelligence Report Adam Hubble and Josh Howitt

[CPU usage] Breadth-first Search:

[RAM usage] A* search:

[RAM usage] Depth-first Search;

[RAM usage] Breadth-first Search:

Artificial Intelligence Report Adam Hubble and Josh Howitt

Without doubt A* search is more computationally stressing in comparison to both Depth-first Search
(DFS) and Breadth-first Search (BFS) throughout program runtime. Through which A* search shows
more inconsistency in the usage of computational processing (CPU) in comparison to both DFS and
BFS techniques. The CPU usage when A* search is equipped fluctuates between 6-7% usage per
averaging 1.5 second interval; DFS and BFS both share a similar fluctuation rate, in which DFS
fluctuates CPU usage between 6-7% per averaging 3-4 second intervals, whereas BFS fluctuates CPU
usage between 6-7% also, per averaging 4-5 second intervals. Relative to the most efficient
utilisation of CPU, the ranking of each technique from most to least is: BFS, DFS and then A* search.
Inevitably, Breadth-first Search provides the most stable processing performance, this is assumed to
be because of BFS’s ability to quickly and inexpensively calculate paths in comparison.

Moreover, regarding memory, all three path finding techniques have used a similar amount of
Random-Access Memory (RAM) over the course of program runtime. In which, all the path finding
methods have utilised 41MB of computational memory on average, and at most had used 44MB
(due to the overlaying text loading into memory). The amount of memory occupied was as expected
and purposed as an indicator of the objects and resources loaded into memory during runtime. As
none of the functionality used to implement each technique, involved the loading of files and objects
into memory during runtime, the memory usage remained identical in comparison.

Overall, the performance profiling results reveal an insignificant difference between the path finding
methods, which therefore suggests that either of the A* search or Breadth-first Search techniques
are better suited for the bot tank. Both techniques calculate paths that would lead the tank to reach
a goal node quicker, this is in comparison to Depth-first Search and enables a faster orientation of
gameplay to the player. Clearly, the path finding techniques within this given scale of program, have
no noticeable influence on computational performance in real-time. And as this testing method
concludes, A* search is once again proven to be a suitable path finding technique for the bot tank.

