

De Montfort University

IMAT 3404
Mobile Robotics

Implementation of a
Robot Controller

Pamela Hardaker and Elizabeth Felton

Authored by

Adam L. Hubble
P17175774

P17175774@my365.dmu.ac.uk

Abstract

This report explores the application of an autonomous robot controller for the Pioneer 3-DX mobile
robot, in focus of the controller’s architecture, exhibiting behaviours in the form of actuation and
their related strategies for enabling the robot to solve complex predefined tasks. Throughout this
document, the development of the robot’s controller will be detailed and where necessary, justified;
there will be particular emphasis on the controller’s behavioural strategies and the robots resulting
actuation, this will be evidenced with relevant testing.

Introduction

Autonomous systems within robotics allows “tasks to be performed without the requirement for
human intervention” [1], autonomy within system control flow can be achieved by implementing
“sets of parameters” [1] or states in the form of a finite-state machine (FSM) for example; this
enables robots to “decide and act” [1] on its own accord, which corresponds with Robin Murphy’s
“hybrid deliberative/ reactive paradigm” [2], for a robot to plan, sense and then actuate.

Available in appendix A

Autonomous robots are considered to be capable of “collecting information from its surroundings,
to perceive its surrounding environment, to localize itself, to decide on actions and to execute the
necessary actuation” [1]. In the context of the robots behavioural requirements: to avoid, edge
follow and map obstacles in its environment, as well as to roam its environment arbitrarily, the robot
would be considered autonomous; given that its behaviours could be invoked interchangeably in
result of self-governance. Thereby in the proceeding sections of this document, the outlined
behavioural requirements of the robot will be discussed as separate strategies, as well as their
bound architecture that allows said autonomy to be achieved.

Avoidance Strategy

Robot avoidance is a “crucial behaviour for numerous robotic systems”[4], whereby a robot should
be able to avoid “obstacles within its workspace”[4]; the configuration for this behaviour was
designed for enabling the robot to evade objects in a range of scenarios and environments, that it
may be subjected to. Respectfully, not only does the robot adjust its position and orientation based
upon the positions of detected objects, it is also able to navigate into and out of confined spaces, as
well as to reverse away from objects that it detects ahead; for the actuations listed, the ultrasonic
sensors equipped by the Pioneer 3-DX robot are utilised.

In relation to the strategy’s fundamental behaviour, Valentino Braitenberg’s avoidance algorithm [5]
was adapted for the simplicity of setup and transitioning to and from the robot traversing forwards
or backwards and turning left or right; the algorithms application was particularly useful for the
Pioneer 3-DX robot, in which the readings from the robots sensors could be applied to “directly
affect its movement” [5], for evasive purposes. These behaviours are invoked when an object is
detected, and the robot is neither reversing nor turning away from an object. For the
implementation of these behaviours, it was only necessary for the robot’s front-facing sensors to be
considered, given that the robot traverses forwards mostly.

Available in appendix B

When deciding the direction to turn to, all of the robot’s front-facing sensor readings are
accumulated for the left and right sides of the robot and are then compared in relation to their
magnitude; the robot will turn to the direction of where objects are situated further away (lower
magnitude), this enables the robot to proportionally manoeuvre away from nearby objects,
successfully.

Available in appendix C

Furthermore, given the scenario that multiple objects are detected at equal distances from the
robot, provided that the front-most sensors do not detect an object at similar distances, the robot
will traverse forwards. Whereas if an object is detected in the facing direction of the robot using the
front-most sensors and the difference in distance between the sensor readings is smaller than
‘0.005’ metres, the robot will enter the subsidiary state ‘reversing’, required that the robot is not
within the subsidiary states ‘turning’ or ‘stuck’. This configuration is necessary for preventing the
robot from oscillating and eventually colliding with an object when an insignificant difference
between the sensor readings is calculated. Upon entering the state, the robot will reverse away from
the object until it is no longer detectable, or alternatively when another object is detected by any of
the back-facing sensors; this enables the robot to avoid objects positioned behind it, as it attempts
to evade objects in front.

In advancement of ‘reversing’, the robot then transitions to the subsidiary state ‘turning’, where it
will turn for ‘1’ or ‘2’ seconds randomly, in a calculated or randomised direction; similar to prior
calculations, the robot turns in the direction of where objects are situated further away, but
considers the back-facing sensor readings to determine the direction also. If the difference between
the accumulated distance detected by the sensors on each side of the robot is equal, the robot’s
direction is randomised binarily to avert oscillation and eventual collision, once more.

Available in appendix D

Accounting for the readings of all sensors enables the robot to consider object positions in a
multidirectional manner, in the scenario that objects surround it, the robot will be able to further
transition to the subsidiary state ‘stuck’, whereby the robot will pivot around its own axis until
sensors four and five do not detect an object. Upon exiting the ‘turning’ state, as the robot remains
‘stuck’, the robot will be able to emerge from the space where no object resides using the
Braitenberg avoidance algorithm. Entering the ‘stuck’ state requires the robot to return six or more
sensor readings with a distance metric, otherwise the robot will simply turn for the randomly
selected amount of time. Turning aims to prevent the robot from re-entering the ‘reversing’ state
and allows the robot to exit the ‘avoiding’ state when no objects are detected. Meanwhile, the
‘stuck’ state exists to enable the robot to explore and map its environment entirely, without colliding
and entrapping itself; the values assigned to the Braitenberg ‘noDetectionDistance’ and
‘maxDetectionDistance’ variables, allow for this.

Wandering Strategy

Robot exploration is “crucial for achieving tasks such as environment modelling, target searching and
auto navigation” [7], wandering as a form of exploration aims to make the robots “unknown
surrounding space” [7], known. For which, the configuration proposed for this behaviour attempts to
enable the robot to explore its environment, in a “series of continuous movements” [7]; forwards,
left and right.

For maximising the area explored, the robot navigates itself into the unexplored areas of an
environment, in a randomised order; this is regulated as the initial wandering behaviour of the
robot, which prioritises mapping and exploration efficiency. Implementing the navigation strategy
required the robot’s environment to be sectioned into areas, each assigned a position relative to the
global coordinate space. The robot traverses forwards and rotates towards its targeted area, by
calculating the angular difference between its position and the areas position; the facing direction of
the robot is also accounted for and is used for determining the accumulated angle that it has rotated
for. Upon all areas being explored, the robots wandering strategy invokes random traversal
behaviours, for the purpose of exploring sub-sections of areas that may not be known to the robot.

Relating to said behaviours, for forward traversal, the robot travels for a randomised distance
ranging between ‘0.1’ and ‘0.5’ meters and is calculated by comparing the magnitude of the distance
between the robots current and previous positions. Travelling short distances allows the robots
exploration to be more varied, as its frequency of sideward traversal increases exponentially; this
assumes that a larger area of an environment can be explored within a given period of time, as
“shorter travelled paths provide more area coverage” [8].

Regarding sideward traversal, the robot adjusts its facing direction until the angular difference
between the robots initial and current heading accumulates a randomly generated angle, ranging
between ‘30’ and ‘90’ degrees. Adjusting to the range provided enables the robot to turn away from
its current area, whilst preventing it from overturning into the same area. Due to the obscurity of
CoppeliaSim’s object orientation layout, the angle the robot accumulates is calculated similarly to
the distance it has travelled, but in the context of heading adjustment. To sustain angle
accumulation, all negative orientations of the robot are negated.

Available in appendix E

Relating to the direction nominated for sideward traversal, a number is randomised between the
range of ‘1’ and ‘100’, using the modulo operator, if the number selected is even the robot will
rotate right for the given angle, vice versa; this range supports increased variation in the direction
chosen.

Edge Following Strategy

Edge following is a significant behaviour of mobile robots when considering environment mapping;
following the edges of objects allows mapping to be conducted more efficiently, as a robot attempts
to maintain a detectable range to objects, rather than avoiding them entirely. For implementing this
behaviour, the Pioneer 3-DX equips a proportional-integral-derivative (PID) controller for
maintaining a set distance to objects (set-point), that the robot considers followable. The application
of a PID controller is well adapted for mobile robot motion control, given its providance for
“smoothness, performance and accuracy” [9] in navigation; when considering the Pioneer 3-DX
robot, the availability of ultrasonic sensors and it being a “wheeled robot” [9], allows its “motor
drives” [9] to be controlled for said navigation to be achieved.

Relating to the configuration set, the Pioneer 3-DX is capable of following the edges of objects
detected to the left or right of its body, the robot employs its left-most, right-most, front-left and
front-right sensors to achieve edge following behaviours; all of the sensors specified only reside in
the front face of the robot, due to the robot only traversing forwards when edge following.

Available in appendix F

Logically, when the robot detects an object from one of its side-most sensors and its corresponding
front sensor has not detected an object, the robot will enter the ‘edge following’ state; this enables
the robot to transition between the ‘avoiding’ and ‘edge following’ states seamlessly, as when a
front-facing sensor other than the side-most sensor detects an object, the controller will invoke the
avoidance strategy.

Available in appendix G

In focus of the accuracy of edge following, with the PID controller integrated the robot is able to
approximately maintain the set-point (‘0.25’ metres) from object edges overtime; the controllers
set-point and maximum distance values have been configured similarly to the Braitenberg avoidance
non-detection and maximum detection values, in addition, the controller samples the most recent
‘10’ errors to achieve such.

Available in appendix H

Importantly, the robot cannot follow the edges of objects detected on both of its sides
simultaneously. However, as previously mentioned for the robot’s avoidance strategy, the robot
would traverse forwards in the scenario presented, thereby resulting in similar mapping output to
edge following.

Environment Mapping

Environment mapping is well purposed for “acquiring a global overview map that integrates all of
the data collected by the robot” [10], to determine the layout of “an unknown terrain” and whether
all of the “regions have been searched” [10] for the area of the terrain. The result, being a visual
representation of the “robots’ environment from a top-view perspective”, can be achieved offline or
in “real-time” [10]; relating to the controllers configuration, a series of offline and online maps are
computed autonomously from the robots ultrasonic sensor readings, this aims to illustrate the
arrangement of the robot’s environment disparately.

For map building and calculations, see appendix I.

Behavioural Control

Architecture Choice

Preliminarily, the robot controller’s architecture was decided in advance of implementing the robot’s
behavioural strategies, this enabled a “basic control system to be established” [11], which proved to
be essential for navigating the implementation of the robot’s behaviours. In result of implementing
the behaviours detailed in this document, the robot now demonstrates “levels of competence” [11]
in the forms of obstacle avoidance, edge following and mapping, as well, the robot can explore an
unknown environment arbitrarily. When relating to the design of the system, it was intended for the
system to resemble Rodney Brooks’ “subsumption architecture” [11], for the purpose of incremental
development and achieving system robustness; being a “control system with increasing levels of
competence” [11], achieves this.

Implementing the behaviours architecturally was achieved via a series of globally defined Boolean
variables, acting as behavioural states or “modules” [11] of the Pioneer 3-DX robot; the application
of Boolean variables was particularly useful for “inhibiting” [11] behaviours, which forms the basis of

state transition and actuation invocation for the robot. Inhibiting behaviours was favoured over
“suppressing behaviours” [11] for logic comprehension and increased computational performance
aims. Relating to priority, avoidance displays the highest precedence over any other behaviour,
proceeded by edge following and then wandering; this configuration considers evasive behaviours as
the most significant.

Available in appendix J

For determining the active state of the robot, all of the state variables are compared to decide which
actuation and corresponding behaviours are invoked. The structure used to control this flow of
execution, can be considered a series of finite-state machines (FSM’s), which benefit system
robustness and seamless behavioural transitioning, due to “low processor overhead” [12].

Available in appendix K

Testing

In the determination of the controller’s final configuration, each of the robot’s behaviours were
calibrated for accomplishing compatibility in a range of environments; this process required the
robot’s actuation variables to be adjusted and then observed from CoppeliaSim’s console and
simulation windows. This was necessary for evaluating the robots resulting behaviours and
preventing unexpected or inappropriate actuation where applicable; it is inevitable that the test
cases created in this instance, have bettered the robot controller for all of its behaviours present.

For the entire testing regime, see appendix L.

Conclusions

Summarising the controller configured, the Pioneer 3-DX robot exhibits behavioural competence for
avoiding, edge following and mapping obstacles in a chosen environment, as well as within the
exploration of it. In result of testing the final configuration, the robot is proven to behave as
expected from an observational and programmatical standpoint and can therefore be regarded as
successful, in the context of this domain.

Acknowledgements

Without the supervision and support of Dr. Pamela Hardaker and Ms. Elizabeth Felton, this project’s
development may not have climaxed to the standard presented, thank you. Also, without the
physical and virtual facilities, alongside the academic support provided by De Montfort University
(Leicester) at the time of this pandemic, this project may never have been completed. I thank those
who are responsible, equally.

Bibliography

[1] THONDIYAH, A. (2016) Autonomy for Robots: Design and Developmental Challenges. In: 3rd
International Conference on Innovations in Automation and Mechatronics Engineering ICIAME 2016,
Chennai, February 2016. Amsterdam: Elsevier LTD, pp. 4-6

[2] MURPHY, R.R. (2000) Introduction to AI Robotics. [Online] Available from:
https://www.researchgate.net/publication/238699045_Introduction_to_AI_Robotics

[3] MURPHY, R.R. (2000) Introduction to AI Robotics. [Diagram] In: MURPHY, R.R. (2000) Introduction
to AI Robotics. Massachussets: MIT Press, p. 260

[4] KELASIDI, E. and MOE, S. and PETTERSEN, K.Y. and KOHL, A.M. and LILJEBACK, P. and GRAVDAHL,
J.T. (2019) Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater
Snake Robots. [Online] Available from:
https://www.frontiersin.org/articles/10.3389/frobt.2019.00057/full

[5] GOCHEV, I. and NADZINSKI, G. and STANKOVSKI, M. (2017) Path Planning and Collision Avoidance
Regime for a Multi-Agent System in Industrial Robotics. Machines. Technologies. Materials. [Online]
Available from: https://www.semanticscholar.org/paper/PATH-PLANNING-AND-COLLISION-
AVOIDANCE-REGIME-FOR-A-Gochev-Nadzinski/69faf19aaf406796377141ed6ba76a4dd6641f23

[6] KIM, K. and KIM, M. and CHONG, N.Y. (2010) RFID based collision-free robot docking in cluttered
environment. In: Progress in Electromagnetics Research. Massachusetts: EWM Publishing, pp. 199-
218.

[7] XIE, Y. and YAN, X. and CHEN, M. and CAI, J. and TANG, Y. (2019) An autonomous exploration
algorithm using environment-robot interacted traversability analysis. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Macau. New York: IEEE, pp. 4885-4890.

[8] EL-HUSSIENY, H. and ASSAL, S. and ABDELLATIF, M. (2013) Improved Sensor-Based Mobile Robot
Exploration of Novel Environments. In: The Sixth International Conference on Intelligent Computing
and Information Systems (ICICIS 2013), Cairo. Chausseestraße: ResearchGate, pp. 43-49.

[9] LEKKALA, K.K. and MITTAL, V.K. (2014) PID controlled 2D precision robot. [Online] Available from:
https://www.researchgate.net/publication/288424236_PID_controlled_2D_precision_robot

[10] LAKAEMPER, R. and LATECKI, L..J. and SUN, X. and WOLTER, D. (2005) Geomtric Robot Mapping.
In: Discrete Geometry for Computer Imagery, 12th International Conference, DGCI 2005, Poitiers.
Chausseestraße: ResearchGate, pp. 11-22.

[11] SIMPSON, J. and JCOBSEN, C.L. and JADUD, M.C. (2006) Mobile Robot Control - The
Subsumption Architecture and occam-pi. In: The 29th Communicating Process Architectures
Conference, CPA 2006, organised under the auspices of WoTUG and the Napier University,
Edinburgh. Chausseestraße: ResearchGate, pp. 225-236.

[12] BANYASAD, O. and COX, P.T. (2008) Visual Programming of Subsumption - Based Reactive
Behaviour. International Journal of Advanced Robotic Systems. [Online] 5(4). Available from:
https://www.researchgate.net/publication/221787373_Visual_Programming_of_Subsumption_-
_Based_Reactive_Behaviour

Appendices

Appendix A:

Figure 1: Robin Murphy's behaviour architecture paradigms [4]

Appendix B:

Figure 2: Pioneer 3-DX ultrasonic sensor alignment [6]

Appendix C:

Figure 3: Pioneer 3-DX ultrasonic sensors sectioned

Appendix D:

Figure 4: Avoiding state, subsidiary state transition, Pioneer 3-DX robot 'reversing' to robot 'turning'

Appendix E:

Figure 5: CoppeliaSim, global orientation in the Z axis, also known as the heading

Appendix F:

Figure 6: Pioneer 3-DX ultrasonic sensors used to edge follow objects on both sides of the robot’s body

Appendix G:

Figure 7: Pioneer 3-DX, state transition, robot 'edge following' to 'avoiding' and back to 'edge following'

Appendix H:

Avoiding Variables Edge Following Variables

noDetectionDistance (metres) 0.34 setPoint (metres) 0.25

maxDetectionDistance (metres) 0.2 maxDistance (metres) 0.275
Table 1: Pioneer 3-DX 'avoiding' and 'edge following' state variables, showing similarity

Appendix I:

For preserving the accuracy of data collected about the robot’s environment, it was necessary for
the controllers mapping strategy to be executed throughout the entirety of the robots tasking, to
ensure that all of the objects detected by the robot, were localized and recorded concurrently for
building the series of maps intended. Unlike the robots behavioural-based strategies, environment
mapping was neither inhibited nor suppressed.

Relating to the online map configuration, map construction is achieved by using plots that represent
the positions of where objects have been detected and the path the robot has taken whilst being
tasked in the environment. Plots are represented within a graph object, appearing as an undocked
window within CoppeliaSim’s interface; the plots are appended to the map in real-time and are
colour coordinated to differentiate between the robot’s path and the positions of detected objects.
For the calculations involved in the map’s construction, when objects are detected, their position is
determined by translating the robot’s sensor readings into the simulators global coordinate space.
Amongst these calculations, the difference in position between the robot and the sensor that has
detected an object, is passed into the rotation matrix in attempt to populate plots with a linear
alignment; this aims to prevent the straight edges of objects from being misrepresented as curves.

In continuation of online mapping calculations, upon a plots position being translated to the global
coordinate space, it is then rounded to the nearest decimal place so that it can be aligned to a plane,
that represents the entire area of the environment. Rounding was necessary as a data validation
strategy, whereby a point detected by one sensor can only be populated in the map when another
sensor has detected it, in the same frame; this is used to verify whether an objects position has or
has not been miscalculated, given the lack of reliability for sonar reception. Without rounding the
position detected, the same point would not likely be detected by another sensor in the same frame
and therefore it would not be populated in the map, this is due to the fidelity of CoppeliaSim’s

coordinate system. Proceeding on from the maps calculations, the plots are then populated in the
map if the conditions were met and are not otherwise; the positions of each plot populated in the
map, are also stored into a two-dimensional array for the use of an offline map.

Figure 8: CoppeliaSim graph object, online (real-time) map, detected object positions and robot pathing

Regarding offline map construction, similarly to the online mapping method, object positions are
detected, translated, and validated. However, rather than handling the positions of detected
objects, counters are used alternatively, for indicating the number of times that a position has been
detected. This serves as another data validation technique to provide certainty for an object’s
existence, the counters are stored in a two-dimensional array also, where the indexes of the array
determine the coordinate for the position detected.

In use of the array populated for the offline map, a Microsoft Excel Comma Separated Values File
(CSV) is handled by CoppeliaSim in the ‘sysCall_cleanup()’ method, for writing all of the counters in
the array, to file. When the writing process finishes, a Microsoft Excel workbook establishes a
connection with the file handled by CoppeliaSim and imports all of the data into a section of cells,
that have been conditionally format by colour. This attempts to display the borders of objects that
the robot has encountered, in a combination of colours; a key is provided for acknowledging the
conditions that each colour represents. As the connection between the files is re-established upon
opening the file and via periodic updates, the offline map can be considered automated for
renewing mapping data and representing it.

Figure 9: Microsoft Excel workbook, offline map, detected object positions colour coordinated for number of detections

In addition to point-based maps, another offline map has been configured for its methods supposed
accuracy and determination of inlying and outlining data, from a given data model. The algorithm
used for the provided reasons is Random Sample Consensus (RANSAC), which has proven to be
worthy for determining the positions and principal geometry of objects in an environment; this is
realised from the use of line-based illustration. For populating the map, as the algorithm handles
vectors, it adopts the object position array that is generated by the online mapping method. When
the robot’s assignment is complete, the arrays size is determined and used to section the array of
coordinates equally. This ensures that a line of best fit will be determined and drawn for each
section, as the minimum number of points per section allowed is ‘3’, whereas the maximum is ‘12’.
For this range, the algorithm only considers an even number of positions detected, if not, a neutral
position is appended to the end of the array; this is necessary for assuring that an equal number of
coordinates is distributed to each of the sections.

As an algorithm, RANSAC is used to recursively compare the number of agreeing points in a section,
with a line that is formed by randomly selecting two points from the equivalent section. For a point
to be considered agreeing with a line, its Euclidean distance must measure below ‘1’; this was set to
improve the selection of points, that make up the line of best fit for the current section. In relation
to the algorithms end condition, it is expected that the algorithm iterates over all of the points
within each section ‘1000’ times, before submitting the lines of best fit for each section that exists.
Such magnitude enables the lines of best fit to be thoroughly considered and well purposed for
representing the robot’s environment.

Upon the algorithms completion, a CSV file is handled by CoppeliaSim in the ‘sysCall_cleanup()’
method, where all of the lines of best fit are written, to file; each line is stored as a set of points for
the simplicity of representing the lines in an external application, as opposed to a complete line
equation. For which, the points stored within the CSV file are then read-in to a Microsoft Visual
Studio solution (SLN) that is SFML enabled and are then drawn as a series of lines in a graphically-
dependant window. Multiple windows have been configured to present the results of RANSAC and
are colour coordinated for differentiating between the lines that do and do not represent objects in
the robot’s environment; this is not entirely accurate, however.

Figure 10: Microsoft Visual Studio solution, offline map, lines of best fit RANSAC output, all lines vs validated lines in

separate SFML windows

Appendix J:

Figure 11: Rodney Brooks’, subsumption architecture control model [11]

Appendix K:

Figure 12: Robot controller, robot 'avoiding' finite-state machine architecture

Figure 13: Robot controller, robot ‘wandering’ finite-state machine architecture

Figure 14: Robot controller, robot 'edge following' finite-state machine architecture

Figure 15: Robot controller, robot 'main-state' finite-state machine architecture

Appendix L:

Testing Regime

Featured below, exists the test cases that were undertaken for the robots ‘avoiding’ state, in
attempt to establish the best configuration for each variable specified; the test cases relate closely

to the Braitenberg avoidance adaptation for the avoidance strategy, being the most significant
technique for object evasion. Relating to the cases summarily, the desired outcome was for the
robot to not exhibit oscillatory motions when detecting objects from multiple sensors
simultaneously, to not collide with objects and to be able to roam areas or spaces of its environment
that are considered confined.

Robot Avoiding, Valentino Braitenberg Avoidance Algorithm

Case Variables Values Observations Implemented

1
noDetectionDistance 0.5 Robot oscillates severely when objects are

detected on either side of its body, robot does
not collide with objects, robot cannot exist in

confined spaces

No

maxDetectionDistance 0.2

2

noDetectionDistance 0.4 Robot oscillates severely when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
relatively confined spaces

No

maxDetectionDistance 0.3

3

noDetectionDistance 0.4 Robot oscillates noticeably when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces

No maxDetectionDistance 0.2

4

noDetectionDistance 0.3 Robot does not oscillate when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces

No maxDetectionDistance 0.2

5

noDetectionDistance 0.3 Robot does not oscillate when objects are
detected on either side of its body, robot

collides with objects often, robot can exist in
confined spaces

No

maxDetectionDistance 0.1

6

noDetectionDistance 0.25 Robot does not oscillate when objects are
detected on either side of its body, robot

collides with objects rarely, robot can exist in
confined spaces

No

maxDetectionDistance 0.2

7

noDetectionDistance 0.375 Robot does not oscillate when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces

No

maxDetectionDistance 0.2

8

noDetectionDistance 0.35 Robot does not oscillate when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces

No

maxDetectionDistance 0.2

9

noDetectionDistance 0.325 Robot does not oscillate when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces (too close to objects)

No

maxDetectionDistance 0.2

10

noDetectionDistance 0.34 Robot does not oscillate when objects are
detected on either side of its body, robot does

not collide with objects, robot can exist in
confined spaces (desired distance from

objects)

Yes maxDetectionDistance 0.2

Table 2: Robot 'avoidance', Braitenberg avoidance algorithm variable test cases

In conclusion of this investigation, it is obvious that the behaviours exhibited from the testing,
succeed the behavioural requirements and intentions of the Braitenberg avoidance adaptation.
Relating to the final variable values nominated, many of the values configured in the test cases prior

were sufficient for exhibiting the desired behaviours, however, for minimising the distance between
the robot and objects it detects, they evidently were not. This differentiation has enabled the robot
to achieve exploration in confined spaces and improve the quality of environment mapping.

In continuation of testing avoidance behaviours, the test cases advancing this passage investigate
the configuration of the robots ‘turning’ subsidiary state, which is invoked upon the robot exiting the
‘reversing’ subsidiary state and the robot being in dispute of its turning direction. Testing the ranges
used to determine the turning actuation of the Pioneer-3DX robot, was essential for the robot
preventing itself from re-entering the ‘reversing’ subsidiary state, given the scenario that the robot
merely turns away from an object. When applying the scenario to the robot, it would be expected of
the robot to iteratively reverse and traverse forwards (wandering); such behaviour would increase
the probability of collision, which is an undesired behaviour of the robot that this research aims to
prevent.

Robot Avoiding, Turning After Reversing Direction and Time Ranges for Randomisation

Case Variables MIN MAX Observations Implemented

1
reverseTurnTimer 1 3 Robot turns after reversing, robot turns in a random

direction, robot turns further than required to
prevent the robot from re-transitioning to the

‘reversing’ state

No

rotationDirection 1 2

2

reverseTurnTimer 1 2 Robot turns after reversing, robot turns in a random
direction, robot turns sufficiently to prevent itself re-
transitioning to the ‘reversing’ state, robot does not

display variation in turning duration however

No

rotationDirection 1 2

3

reverseTurnTimer 0.1 2 Robot turns after reversing, robot turns in a random
direction, robot often turns inadequately and re-
transitions to the ‘reversing’ state multiple times,

robot displays variation in turning duration however

No

rotationDirection 1 2

4

reverseTurnTimer 0.5 2 Robot turns after reversing, robot turns in a random
direction, robot turns sufficiently to prevent itself
from re-transitioning to the ‘reversing’ state and
demonstrates variation in turning duration also

Yes rotationDirection 1 2

Table 3: Robot 'avoidance', robot turning after reversing direction and time ranges for randomisation, test cases

In accordance to the results presented, the investigation has enabled the robot to prevent itself
from re-transitioning to the ‘reversing’ subsidiary state, iteratively; the probability of collision has
been significantly reduced in result of this configuration, as well, the efficiency of environment
exploration and mapping has bettered also.

In the proceeding table, belongs the test cases conducted for the robots ‘edge following’ state, more
specifically the configuration for the PID controller gain variables. In mention of the behaviours that
were intended for edge following, these test cases aimed to determine the better situated gain
variable values, for the robot to follow the entirety of object edges that were not considered small
and spherical, or arched; oscillatory motions were undesired also, as similarly discussed for the
‘avoidance’ strategy.

Robot Edge Following, PID Controller (gain variables)

Case Variables Values Observations RMSE Implemented

1

proportionalGain 15 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00001

No integralGain 5

derivativeGain 0.1

2

proportionalGain 10 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00002

No integralGain 5

derivativeGain 0.1

3

proportionalGain 5 Robot maintains the set-point to the edges of
objects, robot does not edge follow small spherical

objects, robot does not oscillate on enter or exit

0.00052

No integralGain 5

derivativeGain 0.1

4

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00011

No integralGain 5

derivativeGain 0.1

5

proportionalGain 8 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects

rarely, robot does not oscillate on enter or exit

0.00007

No integralGain 5

derivativeGain 0.1

6

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00001

No integralGain 10

derivativeGain 0.1

7

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00002

No integralGain 7

derivativeGain 0.1

8

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00002

No integralGain 6

derivativeGain 0.1

9

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot does not edge follow small spherical

objects, robot does not oscillate on enter or exit

0.00016

No integralGain 4

derivativeGain 0.1

10

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.0006

No integralGain 4.5

derivativeGain 0.1

11

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00013

No integralGain 4.25

derivativeGain 0.1

12

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00007

No integralGain 4

derivativeGain 1

13

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.0009

No

integralGain 4

derivativeGain 0.5

14

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot follows small spherical objects,

robot does not oscillate on enter or exit

0.00014

No integralGain 4

derivativeGain 0.25

15

proportionalGain 7 Robot maintains the set-point to the edges of
objects, robot does not edge follow small spherical

objects, robot does not oscillate on enter or exit

0.00011

Yes integralGain 4

derivativeGain 0.2
Table 4: Robot 'edge following', PID controller gain variable test cases

Conclusively, the results from the investigation prove that the intended behaviours for edge
following have been achieved, whereby, the robot is now able to follow the edges of objects that are
not considered small and spherical, and without displaying oscillatory motions. In result of this
configuration, the robot can explore environments more efficiently and prevent occurrences of
collision when transitioning to ‘edge following’.

Furthermore, in the table below, underlines the configuration for the PID controllers distance
variables, which are implemented within the robots ‘edge following’ strategy also. The distance

variable values were primarily investigated for enabling the robot to edge follow effectively and
smoothly in result of state transitioning; also, it was desired for the robot to not attach itself to the
edges of small and spherical, or arched objects and to be situated closer to the edges of objects,
whilst not exhibiting oscillation. These expectations purposed to better the robot’s environment
exploration and mapping efficiency. For the existence of these test cases, the final configuration for
the robot’s ‘avoidance’ strategy was implemented, due to the ‘noDetectionDistance’ variable being a
conditional barrier to the invocation of edge following behaviours.

Robot Edge Following, PID Controller (distance variables) – restrained by robot ‘avoidance’
‘noDetectionDistance’ variable, final configuration for ‘avoidance’ considered for these test cases

Case Variables Values Observations Implemented

1
setPoint 0.34 Robot momentarily edge follows an object before

exiting, robot transitions to edge following
smoothly as it oscillates insignificantly, robot does

not attach itself to spherical or arched object
edges, does not allow oscillation also

No maxDistance 0.34

2

setPoint 0.3 Robot edge follows an object for a short duration
before exiting, robot transitions to edge following
smoothly as it oscillates insignificantly, robot does

not attach itself to spherical or arched object
edges, allows for small oscillation also

No maxDistance 0.34

3

setPoint 0.25 Robot edge follows an object entirely for the
length of the objects edge before exiting, robot

transitions to edge following smoothly, allows for
large oscillations however

No

maxDistance 0.34

4

setPoint 0.25 Robot edge follows an object entirely for the
length of the objects edge before exiting, robot

transitions to edge following smoothly, allows for
large oscillation however

No

maxDistance 0.3

5

setPoint 0.25 Robot edge follows an object entirely for the
length of the objects edge before exiting, robot

transitions to edge following smoothly as it
oscillates insignificantly, robot does not attach

itself to spherical or arched object edges, allows
for small oscillation also (desired to be closer to

objects)

Yes maxDistance 0.275

6

setPoint 0.2 Robot edge follows an object entirely for the
length of the objects edge, robot transitions to

edge following roughly as it oscillates frequently,
robot attaches itself to every spherical and arched

object edge, robot rarely detaches from arched
object edge, allows for relatively large oscillation

also

No
maxDistance 0.275

7

setPoint 0.225 Robot edge follows an object entirely for the
length of the objects edge, robot transitions to

edge following roughly as it oscillates frequently,
robot attaches itself to every spherical and arched

object edge, robot rarely detaches from arched
object edge, allows for relatively large oscillation

also

No
maxDistance 0.275

8

setPoint 0.23 Robot edge follows an object entirely for the
length of the objects edge, robot transitions to

edge following roughly as it oscillates frequently,
robot attaches itself to every spherical and arched

object edge, robot rarely detaches from arched

No maxDistance 0.275

object edge, allows for relatively large oscillation
also

9

setPoint 0.24 Robot edge follows an object entirely for the
length of the objects edge, robot transitions to

edge following roughly as it oscillates frequently,
robot attaches itself to every spherical and arched

object edge, robot rarely detaches from arched
object edge, allows for relatively large oscillation

also

No maxDistance 0.275

10

setPoint 0.245 Robot edge follows an object entirely for the
length of the objects edge before exiting, robot

transitions to edge following smoothly as it
oscillates unnoticeably, robot attaches itself to

every spherical and arched object edges minimally,
allows for small oscillation also

No
maxDistance 0.275

Table 5:Robot 'edge following', PID controller distance variable test cases

Regarding the outcomes of this investigation, the robot’s ability to edge follow has improved from
the findings of the preceding investigation alone. The values nominated for this configuration allows
the robot to transition to the ‘edge following’ state seamlessly, this has been achieved by eliminating
oscillatory actuation of the robot, during its transition to the state and there on adjustment to the
set-point. Moreover, the robot can also follow the entirety of objects that are not considered small
and spherical, or arched and within close proximity; configuring the behaviours in such way has
enhanced the efficiency of environment exploration and mapping once more.

In regard to wandering, it was intended for the Pionner-3DX robot to traverse forwards, leftwards
and rightwards in the form of random “continuous movements” [7]; this purposed for the robot to
display efficient environment exploration and mapping behaviours. Thereby a series of test cases has
been created, to exercise the sensibility of the values for the relevant variables, in attempt to enable
the robot to explore its environment unguided and arbitrarily.

Robot Wandering, Forward and Sideward Traversal Ranges for Randomisation

Case Variables MIN MAX Observations Implemented

1
wanderingForwardDistance 1 5 Robot does not enter ‘rotation’ states as

forward distance is never achieved in
small environment, robot traverses’

forwards however

No rotationDirection 1 2

wanderingTurnAngle 1 360

2

wanderingForwardDistance 1 3 Robot traverses forward, robot rotates
left and right randomly and rarely, robot

rotates right mostly, robot rotates far
and traverses into area explored prior

No

rotationDirection 1 2

wanderingTurnAngle 1 360

3

wanderingForwardDistance 1 2 Robot traverses forward, robot rotates
left and right randomly and often, robot

rotates right mostly, robot rotates far
and traverses into area explored prior

No

rotationDirection 1 2

wanderingTurnAngle 1 360

4

wanderingForwardDistance 0.1 1 Robot traverses forward, robot rotates
left and right randomly and regularly,

robot rotates right often, robot rotates
far and traverses into area explored

prior

No
rotationDirection 1 2

wanderingTurnAngle 1 360

5

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,
robot rotates right often, robot rotates

No
rotationDirection 1 2

wanderingTurnAngle 1 360

far and traverses into area explored
prior

6

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,
robot rotates right often, robot merely

rotates

No rotationDirection 1 2

wanderingTurnAngle 1 90

7

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,
robot rotates right often, robot rotates

similarly for each iteration

No rotationDirection 1 2

wanderingTurnAngle 45 90

8

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,
robot rotates right often, robot rotates
with increased variation in angle, robot

explores more unvisited areas in
environment

No rotationDirection 1 2

wanderingTurnAngle 30 90

9

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,

robot rotates with increased variation in
direction and angle, robot explores

more unvisited areas in environment

No rotationDirection 1 10

wanderingTurnAngle 30 90

10

wanderingForwardDistance 0.1 0.5 Robot traverses forward, robot rotates
left and right randomly and frequently,
robot rotates with plentiful variation in

direction and angle, robot explores
more unvisited areas in environment

more frequently

Yes rotationDirection 1 100

wanderingTurnAngle 30 90

Table 6: Robot 'wandering', forward and sideward traversal ranges for randomisation, test cases

Relating to the desired behaviours for the robot when ‘wandering’, the results from the test cases
support that the robot has been configured to traverse forwards, left and right, for a randomly
selected distance and angle, within sensible ranges. In which, the robot demonstrates competence
in turning in a randomly selected direction, for a randomly selected angle. Undoubtedly the robot
explores unvisited areas or spaces in an environment more frequently, which suffices for the
purpose of environment exploration and mapping efficiency, yet again.

In further regard to the robots wandering behaviours, it was primarily desired for the robot to
explore all of the unknown spaces in its environment arbitrarily, before transitioning to its random
traversal sequence. This particular strategy for behavioural invocation aimed for the robot to explore
and map its environment as quickly and efficiently as possible. For assuring the structure in the
robot’s exploration pattern and transition to random traversal, a series of scenarios was created and
tested against the robot’s actuation observed.

Robot Wandering, Movement Adjustments for Exploring Unknown Areas

Case Scenario Expectations Successful

1
Robot is assigned a target area of the
environment to explore, the area that
the robot is assigned to explore is the

top-left region of the robot’s
environment

Robot rotates towards the position of the target
area when within the ‘wandering’ state, robot
turns towards the position in the direction that

accumulates the least angle

Yes

2

Robot is assigned a target area of the
environment to explore, the area that
the robot is assigned to explore is the

top-left region of the robot’s

Robot rotates towards the position of the target
area when within the ‘wandering’ state, robot
turns towards the position in the direction that

accumulates the least angle, robot situates within

Yes

environment, the robot enters the
area it is assigned to explore

the desired proximity of the position assigned
overtime as it maintains its facing direction to the

target, robot then marks the area as explored

3

Robot is assigned a target area of the
environment to explore, the area that
the robot is assigned to explore is the

bottom-right region of the robot’s
environment, the robot encounters
many objects upon its target area

being set, robot moves further away
from the target position as evasive

behaviours are invoked

Robot avoids and follows the edges of objects until
reaching space where no objects are detected by
the robot, robot rotates towards the position of

the target area when transitioned to the
‘wandering’ state, robot turns towards the position

in the direction that accumulates the least angle,
robot maintains the assignment of the current

target area until marked as explored, robot
situates within the desired proximity of the

position assigned overtime as it maintains its facing
direction to the target, robot then marks the area

as explored

Yes

4

Robot is assigned a target area of the
environment to explore, the area that

the robot is initially assigned to
explore is the top-right region of the
robot’s environment, following the
areas exploration the robot is then
assigned to explore the bottom-left

region of its environment

Robot rotates towards the position of the target
area when within the ‘wandering’ state, robot
turns towards the position in the direction that

accumulates the least angle, robot situates within
the desired proximity of the position assigned

overtime as it maintains its facing direction to the
target, robot then marks the area as explored,

robot does not exhibit random traversal
behaviours, robot repeats process of exploration
for the bottom-left region until being within the
desired proximity of the position assigned, robot

marks the area as explored also

Yes

5

Robot is assigned a target area of the
environment to explore, the area that
the robot is assigned to explore is the

top-right region of the robot’s
environment, upon entering and

nearing the target position assigned,
the robot invokes other behaviours
due to objects detected nearby, the
robot exists the target area from the

resulting actuation

Robot rotates towards the position of the target
area when within the ‘wandering’ state, robot
turns towards the position in the direction that

accumulates the least angle, robot repeats process
iteratively when transitioning to the ‘wandering’

state and maintains its facing direction to the
target position, robot renters the target area

overtime, robot resides in the desired proximity of
the position assigned, robot marks the area as

explored

Yes

6

Robot is assigned all of the possible
target areas that are unknown

overtime, the robot encounters many
objects overtime that adjusts the
robot’s orientation, the angular

difference between the robots facing
direction and target position changes

relatively

Robot rotates towards the position of the current
target area when within the ‘wandering’ state,

robot turns towards the position in the direction
that accumulates the least angle, always

Yes

7

Robot is assigned all off of the possible
target areas that are unknown,

overtime the robot explores all of the
areas assigned

Robot traverses’ forwards which is later followed
by sideward traversal when within the ‘wandering’

state, robot traverses randomly and does not
adjust its orientation or maintain its facing

direction towards a known target area

Yes

8

Robot is assigned all off of the possible
target areas that are unknown

overtime, robot is assigned a target
area randomly for each time the

currently assigned area is explored

Robot rotates towards the position of the current
target area when within the ‘wandering’ state,

robot turns towards the position in the direction
that accumulates the least angle, robot situates

within the desired proximity of the position

Yes

[Tested many times]

assigned overtime as it maintains its facing
direction to the target, robot then marks the area

as explored, robot does not exhibit random
traversal behaviours, robot repeats process for all

other target areas selected, robot does not
demonstrate a recognisable pattern in its actuation

for the assignment of different target areas
Table 7: Robot 'wandering', adjustments made within movement for exploring unknown areas of an environment, test cases

From the results of the scenario-driven test cases, the configuration of the robot when exploring
unknown areas of an environment, appears to be well established and integrated, when also
considering the random traversal behaviours of the robots ‘wandering’ strategy. It is more so
evident that the controller enables the robot to explore unknown areas of an environment
efficiently and arbitrarily, which supports its purpose for being autonomous. Without doubt, the
configuration presented for the robots wandering strategy allows the robot to be increasingly
independent of human intervention, for the basis of exploration and mapping.

For the array of behaviours tested independently of each other, the behavioural expectations of the
robot when subjected to an unknown environment was in need of testing also, to resolve any
discrepancies within state transitions and related actuations; this was considered possible by
invoking behaviours incorrectly in the result of main-state (avoiding, wandering and edge following)
conditions being setup differently, to how they were intended to be. Thereby in the following study,
the robots “levels of competence” [10] are exercised for the purpose of determining the controller’s
suitability, in the domain of autonomy. For such, the final configuration for each behaviour was
implemented when undergoing the following tests.

Robot Avoiding, Wandering and Edge Following (robot autonomy within an unknown environment)

Case Scenario Expectations Successful

1

Robot wanders into a wall that is
positioned directly in front of its

front-most facing sensors and
detects the object using both sensors

at relatively similar distances

Robot reverses from the wall until it no longer
detects the object, the robot then turns away from

the wall to prevent itself from reversing again,
before it re-transitions to ‘wandering’ again

Yes

2

Robot wanders into a wall that is
positioned in front of its body, but is

angled when made relative to the
robots facing direction

Robot gradually avoids the wall until the robots
corresponding side-most sensor on the robot’s front
face is the only sensor detecting the wall, the robot
then transitions to follow the entire length of the
current wall, before re-transitioning to ‘avoiding’

Yes

3

Robot wanders into a wall that is
positioned in front of its body, but is

angled when made relative to the
robots facing direction, two

additional walls are connected to the
wall the robot initially wanders into

Robot gradually avoids the initial wall until the
robots corresponding side-most sensor on the

robot’s front face is the only sensor detecting the
wall, the robot then transitions to follow the entire
length of the current wall, before re-transitioning to

‘avoiding’, the robot repeats this process for the
other two walls ahead as they are connected

Yes

4

Robot wanders into a wall that is
positioned in front of its body, but is

angled when made relative to the
robots facing direction, an additional

wall is connected to the wall the
robot initially wanders into, there is
a relatively large object positioned

along the wall

Robot gradually avoids the initial wall until the
robots corresponding side-most sensor on the

robots front face is the only sensor detecting the
wall, the robot then transitions to follow the entire
length of the current wall, before re-transitioning to

‘avoiding’, the robot repeats this process for the
following wall ahead as it is connected, up until the

object is detected, for which the robot re-transitions

Yes

to ‘avoiding’ once more and lastly ‘wanders’ into
space following the evasion of the object

5

Robot edge follows a triangular
layout of walls with small arched

corners leading into another
followable wall

Robot follows the current wall in the triangular
layout, robot transitions to the ‘wandering’ state

upon finishing the following of the entire length of
the wall, robot does not attach itself to the small

arched edge and therefore does not follow the wall
connected to it

Yes

6

Robot detects a small spherical
object using its side-most sensor, for

the corresponding side it was
detected on

Robot follows the edge of the object momentarily
upon initially detecting it, robot transitions to
‘avoiding’ upon exiting ‘edge following’, robot

evades the object and then transitions to
‘wandering’ when in open space

Yes

7

Robot wanders around its subjective
environment arbitrarily when no

objects are nearby or in the
detectable range of the robot’s

sensors

Robot traverses’ forwards for a randomly selected
distance until reached, then follows the robot
turning in a randomly selected direction for a

randomly selected angle, this process is reiterated as
the robot does not detect an object, the robot

explores different areas of the environment in a
relatively short period of time

Yes

8

Robot ‘wanders’ or follows the edges
of objects into a corner or relatively
small space that has no front-facing

exit

Robot avoids the objects that border and reside in
the space and where applicable, follows the edges of

the objects that exist there, robot iteratively
transitions between ‘avoiding’ and ‘edge following’

where applicable, robot does not collide or enter the
‘wandering’ state

Yes

9

Robot ‘wanders’ or follows the edges
of objects into a corner or confined
space that has no front-facing exit

Robot avoids the objects that border and reside in
the space and where applicable, follows the edges of
objects that exist there, robot iteratively transitions

between ‘avoiding’ and ‘edge following’ unless robot
transitions to ‘stuck’ state when in a confined space,
whereby the robot pivots around its own axis until

the front-most facing sensors find an exit, robot
transitions to ‘avoiding’ or ‘edge following’

afterwards to emerge into space before
transitioning to ‘wandering’, robot does not collide

or enter the ‘wandering’ state whilst in confined
space(s)

Yes

10

Robot ‘wanders’, ‘edge follows’ or
‘avoids’ objects that leads itself into

a space where multiple objects
reside on either side of the robot,

the robot’s sensors detect the
objects at equal distances from it

Robot exits the current state and transitions to
‘avoiding’ (if not already), robot traverses forwards

whilst no objects are detected ahead of it, after
evading the objects the robot transitions to

‘wandering’ when in open space

Yes

Table 8: Robot controller, robot 'avoiding', 'wandering' and 'edge following' in an unknown environment, behavioural
expectations, and autonomy test cases

To summarise the robot controller’s capabilities, it is evident that the Pioneer-3DX robot is able to
combat a considerable number of scenarios in a range of environments; in consideration of the
results obtained from the testing regime, it is inevitable that the robot outputs “levels of
competence” [10] across its avoiding, wandering and edge following behavioural strategies.
Significantly, each behaviour and related actuation can be invoked interchangeably and
autonomously, this is proven by the robot not requiring “human intervention to complete tasks” [1].

Controller Code Base

function sysCall_init() -- System initialisation functionality

 openFilesAutomatically = true -- Determine whether the executable files are opened on simulation
end

 relativePath = sim.getStringParameter(sim.stringparam_scene_path) -- Store the path to the
current scene (used to make relative paths to other files)

 mapCoordinates = "" -- Create a string to store the file path to the map coordinates CSV file
 mapCoordinates = mapCoordinates .. relativePath .. "/MapCoordinates.csv" -- Concatenate the
strings to form a full file path

 ransacCoordinates = "" -- Create a string to store the file path to the RANSAC coordinates CSV file
 ransacCoordinates = ransacCoordinates .. relativePath .. "/RANSAC/RansacCoordinates.csv" --
Concatenate the strings to form a full file path

 buildRANSAC = "" -- Create a string to store the file path to the RANSAC build solution batch file
 buildRANSAC = buildRANSAC .. relativePath .. "/RANSAC/RANSACBuild.bat" -- Concatenate the
strings to form a full file path

 offlineMap = "" -- Create a string to store the file path to the Excel offline map file
 offlineMap = offlineMap .. relativePath .. "/Map.xlsx"

 solutionRANSAC = "" -- Create a string to store the file path to the RANSAC visual studio solution
file
 solutionRANSAC = solutionRANSAC .. relativePath .. "/RANSAC/RANSAC.sln" -- Concatenate the
strings to form a full file path

 mainMap = true -- Determine whether the robot is currently in the primary environment

 do -----[AVOIDANCE VARIABLES]-----
 sonarSensors = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} -- Create and initialise an
array for the robots sonar sensor objects

 for i = 1, 16, 1 do -- For all of the robots sonar sensors, do the following
 sonarSensors[i] = sim.getObjectHandle("Pioneer_p3dx_ultrasonicSensor".. i) -- Store all of the
robots sonar sensor components into an array
 end -- End of the iterative statement

 leftWheelMotor = sim.getObjectHandle("Pioneer_p3dx_leftMotor") -- Store the robots left
wheel motor object
 rightWheelMotor = sim.getObjectHandle("Pioneer_p3dx_rightMotor") -- Store the robots right
wheel motor object

 noDetectionDistance = 0.34 -- Robots non-detection distance
 maxDetectionDistance = 0.2 -- Robots maximum detection distance

 objectDetected = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -- Create and initialise an array for the
robots sonar sensor detections

 detectedDistance = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} -- Store the distance that an object
has been detected at for each of the robots sonar sensors

 braitenbergLeft = {-0.2, -0.4, -0.6, -0.8, -1, -1.2, -1.4, -1.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} --
Create and initialise an array for the robots front-left sonar sensor angular offsets
 braitenbergRight = {-1.6, -1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} --
Create and initialise an array for the robots front-right sonar sensor angular offsets

 defaultVelocity = 2 -- Robot wheels default velocity

 turnTimer = 0 -- Robots turning timer
 end -----[AVOIDANCE VARIABLES]-----

 do -----[MAPPING VARIABLES]-----
 sceneDrawingPoints = sim.addDrawingObject(sim.drawing_points, 2, 0.005, -1, 100000) -- Setup
scene drawing points

 pioneerObject = sim.getObjectHandle("Pioneer_p3dx") -- Store the robots object

 sonarAngles = { 90, 50, 30, 10, -10, -30, -50, -90} -- Sonar angles of the robots front eight sensors
(heading assumed to be '0' degrees)

 sonarReadings = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } -- Create and initialise an
array for sonar readings

 sonarSensorPositions = { -1, -1, -1, -1, -1, -1, -1, -1 } -- Create and initialise an array for sonar
sensor positions

 do -----[OFFLINE MAP VARIABLES]------
 graphPointRoundDecimalPlaces = 1 -- The number of decimal places the graph plot positions are
rounded to

 offlineMapCoordinates = { } -- Create an array for storing the counts for objects detected at each
map space coordinate
 offlineMapCounters = { } -- Create an array for storing the counts of detected objects

 mapWidth = 0 -- The width of the scene space to be mapped (resizeable floor size)
 mapHeight = 0 -- The height of the scene space to be mapped (resizable floor size)

 mapWidth = 10 / (graphPointRoundDecimalPlaces / 10) -- Width of the map (resizeable floor
width), considers round amount
 mapHeight = 10 / (graphPointRoundDecimalPlaces / 10) -- Height of the map (resizable floor
height), considers round amount

 for i = 1, mapWidth, 1 do -- For the width of the scene to be mapped
 offlineMapCoordinates[i] = { } -- Create an array for storing the 'Y' axis values of map positions

 offlineMapCounters[i] = { } -- Create an array for storing the count of objects detected in the
'Y' axis of map positions

 for j = 1, mapHeight, 1 do -- For the height of the scene to be mapped
 offlineMapCoordinates[i][j] = 0 -- Initialise the positions used for mapping graph plots to the
scene space

 offlineMapCounters[i][j] = 0 -- Initialise the counts for detected objects in the map space
 end -- End of the iterative statement
 end -- End of the iterative statement

 previousGraphPositionX = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Store the previous graph plot position value
for the 'X' axis, translated into the maps coordinate space
 previousGraphPositionY = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Store the previous graph plot position value
for the 'Y' axis, translated into the maps coordinate space
 end -----[OFFLINE MAP VARIABLES]------

 do -----[RANSAC VARIABLES]------
 sections = 2 -- The number of sections detected coordinates are divided into
 coordinateArraySize = 0 -- The number of coordinates detected throughout the simulation
 coordinatesPerSection = 0 -- The number of coordinates allocated to each section of coordinates

 allCoordinatesCounter = 1 -- The number of object positions detected throughout the simulation
(used to index array)
 allDetectedCoordinates = 0 -- The number of object positions detected throughout the
simulation

 allCoordinatesDetected = { } -- Create an array for storing all of the object positions detected
throughout the simulation

 ransacSections = { } -- Create an array for storing the sectioned coordinates

 pointIndexOne = { } -- Index of randomly selected, sectioned 'X' and 'Y' coordinates
 pointIndexTwo = { } -- Index of randomly selected, sectioned 'X' and 'Y' coordinates
 ransacPoints = { } -- Create an array for storing the randomly selected, sectioned coordinates

 ymc = { } -- Create an array for storing the gradient, y intersect and y values of a calcualted line
(y = mx + c)

 pointEuclideanDistanceFromLine = 0 -- The distance the currently iterated point is from the
currently calculated line
 desiredPointEuclideanDistanceFromLine = 1 -- The distance a point is condisered agreeing with
the currently calculated line

 currentPointsAgreeWithLine = { } -- Create an array for storing the amount of point that agree
with the currently calculated line
 highestPointsAgreeWithLine = { } -- Create an array for storing the highest amount of points that
agree with a line

 pointsForBestLines = { } -- Create an array for storing the points for lines calculated, that have
the most amount of points agreeing with it (lines of best fit)

 end -----[RANSAC VARIABLES]------

 do -----[DRAWING VARIABLES]-----
 sensorReadingToDrawGraph = {} -- Create and initialise an array for storing the graph points to
plot

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 sensorReadingToDrawGraph[i] = {} -- Create and initialise an array for storing the 'X' and 'Y'
coordinates of each graphs point, for the currently iterated sensor

 sensorReadingToDrawGraph[i][1] = 0 -- Store the 'X' coordinate of the graph point detected
and calculated for the currently iterated sensor
 sensorReadingToDrawGraph[i][2] = 0 -- Store the 'Y' coordinate of the graph point detected
and calculated for the currently iterated sensor
 end -- End of the iterative statement

 sensorReadingToDrawPoint = {} -- Create and initialise an array for storing the scene points to
draw

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 sensorReadingToDrawPoint[i] = {} -- Create and initialise an array for storing the 'X' and 'Y'
coordinates of each scenes point, for the currently iterated sensor

 sensorReadingToDrawPoint[i][1] = 0 -- Store the 'X' coordinate of the scene point detected
and calculated for the currently iterated sensor
 sensorReadingToDrawPoint[i][2] = 0 -- Store the 'Y' coordinate of the scene point detected
and calculated for the currently iterated sensor
 end -- End of the iterative statement

 end -----[DRAWING VARIABLES]-----

 end -----[MAPPING VARIABLES]-----

 do -----[EDGE FOLLOWING VARIABLES]-----
 setPoint = 0.25 -- PID controller set point (desired distance from walls)
 maxDistance = 0.275 -- PID controller maximum distance (maximum distance from walls)

 proportionalGain = 7 -- PID controller proportional gain
 integralGain = 4 -- PID controller integral gain
 derivativeGain = 0.2 -- PID controller derivative gain

 leftErrorSum = { } -- PID controller left edge following error array
 rightErrorSum = { } -- PID controller right edge following error array

 leftErrorCounter = 1 -- PID controller left edge following error counter
 rightErrorCounter = 1 -- PID controller right edge following error counter

 integralThreshold = 10 -- PID controller integral threshold

 leftCurrentError = 0 -- PID controller current left edge following error
 leftLastError = 0 -- PID controller last left edge following error

 rightCurrentError = 0 -- PID controller current right edge following error

 rightLastError = 0 -- PID controller last right edge following error

 edgeFollowingLeftDetected = false -- Determine whether the robot will follow the edge of a
detected object using its left-most front facing sensor
 edgeFollowingRightDetected = false -- Determine whether the robot will follow the edge of a
detected object using its right-most front facing sensor

 edgeEndReached = false -- Determine whether the end of a followed edge has been reached
 edgeFollowingTimer = 0 -- Robots minimum time edge following to be considered in the 'edge
following' phase

 RMSE = 0 -- Robot edge following RMSE value
 end -----[EDGE FOLLOWING VARIABLES]-----

 do -----[WANDERING VARIABLES]-----
 wanderingTurnAngle = 0 -- Robots wandering turn angle

 wanderingForwardDistance = 0 -- Robots wandering forward distance

 robotPosition = { 0, 0, 0 } -- Robots position incrementer

 currentRobotPosition = { 0, 0, 0 } -- Robots current position table/ array
 previousRobotPosition = { 0, 0, 0 } -- Robots previous position table/ array
 accumulatedForwardDistance = 0 -- Accumulated distance the robot has moved forwards

 wanderingForwardDistanceSet = false -- Determine whether the robots wandering forward
distance has been set

 robotRotation = 0 -- Robots rotation incrementer

 currentRobotRotation = { 0, 0, 0 } -- Robots current rotation table/ array
 accumulatedRotationAngle = 0 -- Accumulated angle the robot has rotated towards

 currentRobotHeading = 0 -- Robots current heading (facing direction)
 previousRobotHeading = 0 -- Robots previous heading (facing direction)

 robotWanderingReset = false -- Determine whether the robots 'wandering' phase configuration
requires to be reset (was interrupted)

 targetPositions = { } -- Create an array for storing the positions of each area in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 targetPositions[i] = { } -- Create another array for store the positions values for each area
(two-dimensional)
 end -- End of the iterative statement

 targetPositions[1][1] = -3.85 -- Top-left area target position for the 'X' axis
 targetPositions[1][2] = 3.85 -- Top-left area target position for the 'Y' axis

 targetPositions[2][1] = 0.00 -- Top-middle area target position for the 'X' axis
 targetPositions[2][2] = 3.85 -- Top-middle area target position for the 'X' axis

 targetPositions[3][1] = 3.00 -- Top-right area target position for the 'X' axis
 targetPositions[3][2] = 3.00 -- Top-right area target position for the 'X' axis

 targetPositions[4][1] = -3.85 -- Middle-left area target position for the 'X' axis
 targetPositions[4][2] = 0.00 -- Middle-left area target position for the 'X' axis

 targetPositions[5][1] = 0.00 -- Central area target position for the 'X' axis
 targetPositions[5][2] = 0.00 -- Central area target position for the 'X' axis

 targetPositions[6][1] = 4.00 -- Middle-right area target position for the 'X' axis
 targetPositions[6][2] = 0.00 -- Middle-right area target position for the 'X' axis

 targetPositions[7][1] = -3.85 -- Bottom-left area target position for the 'X' axis
 targetPositions[7][2] = -3.85 -- Bottom-left area target position for the 'X' axis

 targetPositions[8][1] = 0.00 -- Bottom-middle area target position for the 'X' axis
 targetPositions[8][2] = -3.85 -- Bottom-middle area target position for the 'X' axis

 targetPositions[9][1] = 4.00 -- Bottom-right area target position for the 'X' axis
 targetPositions[9][2] = -3.85 -- Bottom-right area target position for the 'X' axis

 topLeftTarget = { -3.85, 3.85 } -- Store the top-left area target for robot exploration
 bottomLeftTarget = { -3.85, -3.85 } -- Store the top-right area target for robot exploration
 topRightTarget = { 4.00, 3.85 } -- Store the bottom-left area target for robot exploration
 bottomRightTarget = { 4.00, -3.85 } -- Store the bottom-right area target for robot exploration
 centreMiddleTarget = { 0.00, 0.00 } -- Store the centre area target for robot exploration
 topMiddleTarget = { 0.00, 3.85 } -- Store the top-middle area target for robot exploration
 bottomMiddleTarget = { 0.00, -3.85 } -- Store the bottom-middle area target for robot
exploration
 leftMiddleTarget = { -3.85, 0.00 } -- Store the left-middle area target for robot exploration
 rightMiddleTarget = { 4.00, 0.00 } -- Store the right-middle area target for robot exploration

 targetClosestReached = { } -- Create an array for storing the closest position achieved to each
area in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 targetClosestReached[i] = { } -- Create another array for storing the position values for each
area (two-dimensional)

 targetClosestReached[i][1] = 0 -- Intialise the 'X' position value for the currently iterated area
 targetClosestReached[i][2] = 0 -- Intialise the 'Y' position value for the currently iterated area
 end -- End of the iterative statement

 robotCurrentArea = { } -- Create an array for determining the area in the environment that the
robot is currently situated in

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 robotCurrentArea[i] = false -- Intialise the boolean variables
 end -- End of the iterative statement

 robotExploredArea = { } -- Create an array for determining the areas in the environment that the
robot has explored

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 robotExploredArea[i] = false -- Intialise the boolean variables
 end -- End of the iterative statement

 robotAreaExploring = { } -- Create an array for determining the area in the environment that the
robot is currently exploring

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 robotAreaExploring[i] = false -- Intialise the boolean variables
 end -- End of the iterative statement

 robotExploringArea = 0 -- Determine the area that the robot has been assigned to explore,
numerically
 robotUnexploredAreas = 9 -- Store the number of areas unexplored by the robot

 robotAreaToExploreSelected = false -- Determine whether the robot has been assigned an area
to explore
 robotExploredAreaSelected = true -- Determine whether the robot has explored the curretly
assigned area
 allAreasExplored = false -- Detemine whether all of the areas have been explored by the robot

 exploringAreaOutput = "UNASSIGNED" -- Store the area being explored by the robot currently

 targetDifference = { } -- Create an array for storing the difference between the robots and target
areas positions for each area in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 targetDifference[i] = 0 -- Intialise all of the distances for each area
 end -- End of the iterative statement

 previousTargetDifference = { } -- Create an array for storing the previous difference between the
robots ad target areas positions for each area in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 previousTargetDifference[i] = 0 -- Intialise all of the distance variables for each area
 end -- End of the iterative statement

 robotDistanceToTargets = { } -- Create an array for storing the distance between the robot and
all of the target areas in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 robotDistanceToTargets[i] = 0 -- Intialise all of the distance variables for each area
 end -- End of the iterative statement

 robotClosestToTarget = { } -- Create an array for storing the closest distance achieved to each
area in the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following

 robotClosestToTarget[i] = -1 -- Initialise all of the distance variables for each area
 end -- End of the iterative statement

 areaExploredOutput = { } -- Create an array for determining whether the area the robot is
currently situated in, has been explroed already

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 areaExploredOutput[i] = "No" -- Intialise the string variables
 end -- End of the iterative statement

 robotRotationTranslated = { 0, 0 } -- Store the robots orientation for the 'X' and 'Y' axes
(translated)
 robotTargetExploreAngle = 0 -- Store the angle the robot considers when rotating to the current
area target assigned

 robotCurrentHeading0to360 = 0 -- Store the robots current heading (translated)
 robotDifferenceBetweenAngles = 0 -- Store the angular difference between the robots position
and the assigned target position

 robotRotatedToTarget = 0 -- Determine how far the robot has rotated towards the current area
target since the last frame was made
 rotateAccumulatedRotatedToTarget = 0 -- Determine how far the robot has rotated towards the
current area target cummulatively
 end -----[WANDERING VARIABLES]-----

 do -----[ROBOT STATE VARIABLES]------
 robotIsAvoiding = false -- Determine whether the robot is within the 'avoiding' phase
 robotIsEdgeFollowing = false -- Determine whether the robot is within the 'edge-following'
phase

 robotIsReversing = false -- Determine whether the robot is traversing backwards in relation to
its facing direction
 robotIsTurning = false -- Determine whether the robot is rotating around its axis for a given time
 robotIsStuck = false -- Determine whether the robot is stuck (objects surrounding it)

 robotIsMovingForward = false -- Determine whether the robot is traversing forwards in relation
to its facing direction
 robotIsRotating = false -- Determine whether the robot is rotating around its axis to a given
angle
 end -----[ROBOT STATE VARIABLES]------

 do -----[CONSOLE OUTPUT]------
 debugMode = true -- Determine whether comments are printed to the console from outside of
the actuation function

 robotPosition = { 0, 0 } -- Robots position (X, Y)
 robotHeading = 0 -- Robots heading (degrees)

 robotSpeed = 0 -- Robots movement speed (meteres per second)

 robotDistanceTravelled = 0 -- Robots distance travelled (metres)

 previousPosition = { 0, 0, 0 } -- Robots previous position

 leftMostDetectedObject = { 0, 0 } -- Left most detected objects corresponding sensor and its
distance from the object
 rightMostDetectedObject = { 0, 0 } -- Right most detected objects corresponding sensor and its
distance from the object

 leftString = "" -- Store the robots object detecting sensor and distance to the closet object,
relative to the robots left side
 rightString = "" -- Store the robots object detecting sensor and distance to the closet object,
relative to the robots right side

 ransacTarget = math.random(8000, 12000) -- Generate a number of coordinates for RANSAC
lines to be calculated from

 targetSet = false -- Determine whether the RANSAC target has been set
 validTarget = false -- Determine whether a suitable RANSAC target has been selected

 while (targetSet == false) do -- While the the target number of coordinates is not even (odd), do
the following
 if (ransacTarget % 2 == 0) then -- If the current target is divisible by '2' (without a remainder -
even), do the following
 if (validTarget == false) then -- If a valid target for the number of coordinates used by
RANSAC (coordinates per section) has not been met, do the following
 for i = 1, ransacTarget, 1 do -- For the size of the current RANSAC target, do the following
 if ((ransacTarget / i) > 2 and (ransacTarget / i) <= 12 and (ransacTarget / i) % 2 == 0)
then -- If the current RANSAC target is divisble by '2' (without a remainder - even)
 -- and creates a multiple of more than '2' but less
than '12' (more than two coordinates per section is achieveable), do the following
 validTarget = true -- A valid target has been met
 end -- End of the conditional statement
 end -- End of iterative statement

 if (validTarget == false) then -- If the current RANSAC target is not valid for the purpose of
calculation, do the following
 ransacTarget = math.random(8000, 12000) -- Regenerate a number of coordinates for
RANSAC lines to be calculated from

 end -- End of conditional statement
 else -- If a valid target for the number of coordinates used by RANSAC (coordinates per
section) has been met, do the following
 targetSet = true -- The target has been set
 end -- End of the conditional statement
 else -- If the current target is not divisible by '2' (with a remainder - odd), do the following
 ransacTarget = math.random(8000, 12000) -- Regenerate a number of coordinates for
RANSAC lines to be calculated from

 end -- End of conditional statement
 end -- End of the conditional statement

 printf("RANSAC Target [" .. ransacTarget .. "]") -- Output the target number of coordinates for
RANSAC lines to be calculated from

 ransacTargetCompletion = 0 -- The percentage of completion, relative to the number of
positions detected vs the target number of coordinates to be detected
 end -----[CONSOLE OUTPUT]------

end -- End of the function declaration

function sysCall_cleanup() -- System cleanup functionality

 if(mainMap == true) then -- If the robot is currently in the primary environment, do the following

 do -----[MAP OUTPUT]------
 mapFile = io.open(mapCoordinates, "w") -- Open the mapping file, set to write data to the file
 io.output(mapFile) -- Write the output to the opened file

 for i = 1, mapWidth, 1 do -- For the width of the scene to be mapped, do the following
 for j = 1, mapHeight, 1 do -- For the height of the scene to be mapped, do the following
 if (j == mapHeight) then -- If the current iteration is equal to the height dimension of the
resizable floor, do the following
 io.write(offlineMapCounters[i][j], "\n") -- Write the number of times an object at the
currently iterated position has been detected, followed by a new line for writing the next row of
positions
 else -- If the current iteration is not equal to the height dimension of the resizable floor, do
the following
 io.write(offlineMapCounters[i][j], ",") -- Write the number of times an object at the
currently iterated position has been detected, to the corresponding file, followed by a comma for
writing the next counter
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -- End of the iterative statement

 io.close(mapFile) -- Close the mapping file

 end -----[MAP OUTPUT]------

 do -----[RANSAC OUTPUT]------
 ransacFile = io.open(ransacCoordinates, "w") -- Open the mapping file, set to write data to the
file
 io.output(ransacFile) -- Write the output to the opened file

 do -----[CALCULATE THE NUMBER OF SECTIONS TO USE]------
 coordinateArraySize = table.getn(allCoordinatesDetected) -- Store the number of object
poisitions detected throughout the simulation

 if (coordinateArraySize % 2 ~= 0) then -- If the number of coordinates detected is not divisble by
'2' without a remainder (odd), do the following
 allCoordinatesDetected[allCoordinatesCounter + 1] = { } -- Create an array for storing detected
object positions

 allCoordinatesDetected[allCoordinatesCounter + 1][1] = 0 -- Intialise the first element in the
array
 allCoordinatesDetected[allCoordinatesCounter + 1][2] = 0 -- Intialise the second element in
the array
 end -- End of the conditional statement

 for i = 2, coordinateArraySize, 1 do -- For the given range of possible number of sections, do the
following
 if (i ~= coordinateArraySize) then -- If the current iteration is not equal to the number of
coordinates stored, do the following
 if (coordinateArraySize % i == 0) then -- If the size of all of the detected object positions is
divisble by the current iteration and has no remainder, do the following
 if ((coordinateArraySize / i) > 2 and (coordinateArraySize / i) <= 12) then -- If the current
iteration provides more than '2' coordinates per section, do the following
 sections = i -- Set the number of sections of coordinates to the current iteration
 coordinatesPerSection = coordinateArraySize / sections -- Calculate the number of
coordinates allocated to each section
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -----[CALCULATE THE NUMBER OF SECTIONS TO USE]------

 do -----[INITIALISE ARRAYS FOR STORING EACH SECTIONS POINTS/ POINTS FOR LINE
EQUATIONS]------
 for i = 1, sections, 1 do -- For all of the sections of coordinates, do the following
 ransacSections[i] = { } -- Create an array for storing the section number of coordinates

 ransacPoints[i] = { } -- Create an array for storing two randomly selected points, used by
RANSAC to calculate a line of best fit for the currently iterated section of coordinates
 ransacPoints[i][1] = 0 -- Coordinate 'x1' initialisation
 ransacPoints[i][2] = 0 -- Coordinate 'y1' initialisation
 ransacPoints[i][3] = 0 -- Coordinate 'x2' initialisation
 ransacPoints[i][4] = 0 -- Coordinate 'y2' initialisation

 ymc[i] = { } -- Create an array for storing the gradient, y intersect and y value, values, used to
calculate lines for every section of coordinates
 ymc[i][1] = 0 -- Y value initialisation
 ymc[i][2] = 0 -- Gradient initialisation
 ymc[i][3] = 0 -- Y intersect initialisation

 currentPointsAgreeWithLine[i] = { } -- Create an array for storing the number of points
agreeing with the calcualted line, for the currently iterated section of coordinates
 currentPointsAgreeWithLine[i][1] = 0 -- Initialise the number of agreeing points for the
currently iterated section of coordinates

 highestPointsAgreeWithLine[i] = { } -- Create an array for storing the highest amount of points
agreeing with any line calculated, for the currently iterated section of coordinates
 highestPointsAgreeWithLine[i][1] = 0 -- Initialise the highest number of agreeing points for the
currently iterated section of coordinates

 pointsForBestLines[i] = { } -- Create an array for storing the points that represent the best line
of fit for the currently iterated section of coordinates
 pointsForBestLines[i][1] = 0 -- Coordinate 'x1' initialisation
 pointsForBestLines[i][2] = 0 -- Coordinate 'y1' initialisation
 pointsForBestLines[i][3] = 0 -- Coordinate 'x2' initialisation
 pointsForBestLines[i][4] = 0 -- Coordinate 'y2' initialisation

 for j = 1, coordinateArraySize, 1 do -- For the number of object positions detected throughout
the simulation, do the following
 ransacSections[i][j] = { } -- Create an array for storing the coordinates of the currently
iterated sections coordinates
 ransacSections[i][j][1] = 0 -- Coordinate 'X' initialisation
 ransacSections[i][j][2] = 0 -- Coordinate 'Y' initialisation
 end -- End of the iterative statement

 end -- End of the iterative statement
 end -----[INITIALISE ARRAYS FOR STORING EACH SECTIONS POINTS/ POINTS FOR LINE
EQUATIONS]------

 do -----[SECTION THE COORDINATES]------
 for i = 1, sections, 1 do -- For all of the sections of coordinates, do the following
 if (i == 1) then -- If the current section iterated is the first section of coordinates, do the
following
 for j = 1, coordinatesPerSection, 1 do -- For the number of coordinates allocated to every
section, do the folloiwng
 ransacSections[i][j][1] = allCoordinatesDetected[j][1] -- Store the 'X' value of coordinates
for the section
 ransacSections[i][j][2] = allCoordinatesDetected[j][2] -- Store the 'Y' value of coordinates
for the section

 end -- End of the iterative statement
 else -- If the current section iterated is not the first section of coordinates, do the following
 for k = (coordinatesPerSection * (i - 1) + 1), coordinatesPerSection * i, 1 do -- For the
sections coordinate boundaries (relative to all of the object positions detected throughout the
simulation), do the following
 ransacSections[i][k][1] = allCoordinatesDetected[k][1] -- Store the 'X' value of coordinates
for the section
 ransacSections[i][k][2] = allCoordinatesDetected[k][2] -- Store the 'Y' value of coordinates
for the section

 end -- End of the iterative statement
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -----[SECTION THE COORDINATES]------

 for x = 1, 1000, 1 do -----[STOP CONDITION]------

 do -----[GET TWO POINTS FOR EACH SECTION OF COORDINATES]------
 for i = 1, sections, 1 do -- For all of the sections of coordinates, do the following
 if (i == 1) then -- If the current section iterated is the first section of coordinates, do the
following
 pointIndexOne[i] = math.random(1, coordinatesPerSection * i) -- Generate a random
index for retrieving the first coordinate in the currently iterated section of coordinates
 pointIndexTwo[i] = math.random(1, coordinatesPerSection * i) -- Generate a random
index for retrieving the second coordinate in the currently iterated section of coordinates

 while (pointIndexTwo[i] == pointIndexOne[i]) do -- If the randomly generated indexes are
the same, do the following
 pointIndexOne[i] = math.random(1, coordinatesPerSection * i) -- Regenerate the first
coordinates index
 pointIndexTwo[i] = math.random(1, coordinatesPerSection * i) -- Regenerate the
second coordinates index
 end -- End of the conditional statement

 else -- If the current section iterated is not the first section of coordinates, do the following
 pointIndexOne[i] = math.random(coordinatesPerSection * (i - 1) + 1,
coordinatesPerSection * i) -- Generate a random index for retrieving the first coordinate in the
currently iterated section of coordinates-- Generate a random index for retrieving the first
coordinate in the currently iterated section of coordinates
 pointIndexTwo[i] = math.random(coordinatesPerSection * (i - 1) + 1,
coordinatesPerSection * i) -- Generate a random index for retrieving the second coordinate in the
currently iterated section of coordinates-- Generate a random index for retrieving the second
coordinate in the currently iterated section of coordinates

 while (pointIndexTwo[i] == pointIndexOne[i]) do -- If the randomly generated indexes are
the same, do the following
 pointIndexOne[i] = math.random(coordinatesPerSection * (i - 1) + 1,
coordinatesPerSection * i) -- Regenerate the first coordinates index
 pointIndexTwo[i] = math.random(coordinatesPerSection * (i - 1) + 1,
coordinatesPerSection * i) -- Regenerate the second coordinates index
 end -- End of the conditional statement--]]

 end -- End of the conditional statement

 ransacPoints[i][1] = ransacSections[i][pointIndexOne[i]][1] -- Store the 'x1' coordinate for
the currenty iterated section of coordinates (first point)
 ransacPoints[i][2] = ransacSections[i][pointIndexOne[i]][2] -- Store the 'y1' coordinate for
the currenty iterated section of coordinates (first point)

 ransacPoints[i][3] = ransacSections[i][pointIndexTwo[i]][1] -- Store the 'x2' coordinate for
the currenty iterated section of coordinates (second point)
 ransacPoints[i][4] = ransacSections[i][pointIndexTwo[i]][2] -- Store the 'y2' coordinate for
the currenty iterated section of coordinates (second point)

 --printf("Sections: " .. sections .. " Per section: " .. coordinatesPerSection ..
 --" X1: " .. ransacPoints[i][1] .. " Y1: " .. ransacPoints[i][2] .. " Index One: " ..
pointIndexOne[i] ..

 --" X2: " .. ransacPoints[i][3] .. " Y2: " .. ransacPoints[i][4] .. " Index Two: " ..
pointIndexTwo[i])
 --io.write("Section: " .. i, ",", ransacPoints[i][1], ",", ransacPoints[i][2], ",", ransacPoints[i][3],
",", ransacPoints[i][4], "\n")
 end
 end -----[GET TWO POINTS FOR EACH SECTION OF COORDINATES]------

 do -----[FIND BEST LINE OF FIT]------
 for i = 1, sections, 1 do -- For all of the sections of coordinates, do the following
 ymc[i][2] = (ransacPoints[i][4] - ransacPoints[i][2]) / (ransacPoints[i][3] - ransacPoints[i][1]) -
- Gradient (m) = (y2-y1)/(x2-x1)
 ymc[i][3] = ransacPoints[i][2] - (ymc[i][2] * (ransacPoints[i][1])) -- Y intersect (c) = y1 -
(gradient * x1)
 ymc[i][1] = 1 -- Give Y a value (itself - 1Y)

 -- y = mx + c (original)
 -- c = y - mx (translated)

 if (i == 1) then -- If the current section iterated is the first section of coordinates, do the
following
 for j = 1, coordinatesPerSection, 1 do -- For the number of coordinates allocated to every
section, do the folloiwng

 -- If the currently iterated pair of coordinates are not the randomly selected
coordinates for the currently iterated section, do the following
 --if (ransacPoints[i][1] == ransacSections[i][j][1] and ransacPoints[i][2] ==
ransacSections[i][j][2]) then
 --elseif (ransacPoints[i][3] == ransacSections[i][j][1] and ransacPoints[i][4] ==
ransacSections[i][j][2]) then
 --else

 pointEuclideanDistanceFromLine = ymc[i][2] * (ransacSections[i][j][1] -
ransacSections[i][j][2]) -- Calculate the euclidean distance between the currenty iterated point in the
currently iterated section, to the calcualted line

 if (pointEuclideanDistanceFromLine < 0) then -- If the currently iterated points
distance to the calculated line is smaller than '0' (negative), do the following
 pointEuclideanDistanceFromLine = -(pointEuclideanDistanceFromLine) -- Negate
the euclidean distance
 end -- End of the conditional statement

 if (pointEuclideanDistanceFromLine < desiredPointEuclideanDistanceFromLine) then
-- If the currently iterated points distance to the calculated line is within the desired distance to the
line, do the following
 currentPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] + 1 --
Increment the number of agreeing points to the calculated line
 end -- End of the conditional statement

 if (highestPointsAgreeWithLine[i][1] == 0) then -- If no highest points agreeing with
the current line has been set before for the section of coordinates

 highestPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] -- Set the
highest number of points agreeing with any line for the currently iterated section of coordinates, to
the current number of points agreeing with the calculated line

 for k = 1, 4, 1 do -- For each points 'X' and 'Y' value, do the following
 pointsForBestLines[i][k] = ransacPoints[i][k] -- Store the best line of fit for the
currently iterated section of coordinates
 end -- End of iterative statement
 else -- If a highest points agreeing has been set before for the section of coordinates
 if (currentPointsAgreeWithLine[i][1] > highestPointsAgreeWithLine[i][1]) then -- If
the number of points agreeing with the currently calculated line is larger than the highest number of
points agreeing with any line for the currently iterated section of coordinates, do the following
 highestPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] -- Set the
highest number of points agreeing with any line for the currently iterated section of coordinates, to
the current number of points agreeing with the calculated line

 for l = 1, 4, 1 do -- For each points 'X' and 'Y' value, do the following
 pointsForBestLines[i][l] = ransacPoints[i][l] -- Store the best line of fit for the
currently iterated section of coordinates
 end -- End of the iterative statement
 end -- End of the conditional statement
 end -- End of the conditional statement

 --printf("Distance: " .. pointEuclideanDistanceFromLine .. " Gradient: " .. ymc[i][2] ..
 --" X1: " .. ransacPoints[i][1] .. " Y1: " .. ransacPoints[i][2] ..
 --" X2: " .. ransacPoints[i][3] .. " Y2: " .. ransacPoints[i][4])

 --end -- End of conditional statement
 end -- End of the iterative statement
 else
 for m = (coordinatesPerSection * (i - 1) + 1), coordinatesPerSection * i, 1 do -- For the
sections coordinate boundaries (relative to all of the object positions detected throughout the
simulation), do the following

 -- If the currently iterated pair of coordinates are not the randomly selected
coordinates for the currently iterated section, do the following
 --if (ransacPoints[i][1] == ransacSections[i][m][1] and ransacPoints[i][2] ==
ransacSections[i][m][2]) then
 --elseif (ransacPoints[i][3] == ransacSections[i][m][1] and ransacPoints[i][4] ==
ransacSections[i][m][2]) then
 --else

 pointEuclideanDistanceFromLine = ymc[i][2] * (ransacSections[i][m][1] -
ransacSections[i][m][2]) -- Calculate the euclidean distance between the currenty iterated point in
the currently iterated section, to the calcualted line

 if (pointEuclideanDistanceFromLine < 0) then -- If the currently iterated points
distance to the calculated line is smaller than '0' (negative), do the following
 pointEuclideanDistanceFromLine = -(pointEuclideanDistanceFromLine) -- Negate
the euclidean distance
 end -- End of the conditional statement

 if (pointEuclideanDistanceFromLine < desiredPointEuclideanDistanceFromLine) then
-- If the currently iterated points distance to the calculated line is within the desired distance to the
line, do the following
 currentPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] + 1 --
Increment the number of agreeing points to the calculated line
 end -- End of the conditional statement

 if (highestPointsAgreeWithLine[i][1] == 0) then -- If no highest points agreeing with
the current line has been set before for the section of coordinates
 highestPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] -- Set the
highest number of points agreeing with any line for the currently iterated section of coordinates, to
the current number of points agreeing with the calculated line

 for n = 1, 4, 1 do -- For each points 'X' and 'Y' value, do the following
 pointsForBestLines[i][n] = ransacPoints[i][n] -- Store the best line of fit for the
currently iterated section of coordinates
 end -- End of the iterative statement
 else -- If a highest points agreeing has been set before for the section of coordinates
 if (currentPointsAgreeWithLine[i][1] > highestPointsAgreeWithLine[i][1]) then -- If
the number of points agreeing with the currently calculated line is larger than the highest number of
points agreeing with any line for the currently iterated section of coordinates, do the following
 highestPointsAgreeWithLine[i][1] = currentPointsAgreeWithLine[i][1] -- Set the
highest number of points agreeing with any line for the currently iterated section of coordinates, to
the current number of points agreeing with the calculated line

 for o = 1, 4, 1 do -- For each points 'X' and 'Y' value, do the following
 pointsForBestLines[i][o] = ransacPoints[i][o] -- Store the best line of fit for the
currently iterated section of coordinates
 end -- End of the iterative statement
 end -- End of the conditional statement
 end -- End of the conditional statement

 --printf("Distance: " .. pointEuclideanDistanceFromLine .. " Gradient: " .. ymc[i][2] ..
 --" X1: " .. ransacPoints[i][1] .. " Y1: " .. ransacPoints[i][2] ..
 --" X2: " .. ransacPoints[i][3] .. " Y2: " .. ransacPoints[i][4])

 --end -- End of the conditional statement
 end -- End of the iterative statement
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -----[FIND BEST LINE OF FIT]------

 printf("RANSAC Calculation Completion [" .. string.format("%.2f", (x / 1000) * 100) .. "
PERCENT]" ..
 " Coordinates: " .. coordinateArraySize .. " Sections: " .. sections .. " Coordinates Per
Section: " .. coordinatesPerSection) -- Indicate the RANSAC calculation completion

 end -----[STOP CONDITION]------

 for i = 1, sections, 1 do -- For all of the sections of coordinates, do the following

 io.write(pointsForBestLines[i][1], ",", pointsForBestLines[i][2], ",", pointsForBestLines[i][3], ",",
pointsForBestLines[i][4], "\n") -- Write the points representing the lines of best fit, for the currently
iterated section of coordinates
 end -- End of the iterative statement

 io.close(ransacFile) -- Close the ransac file

 printf("RANSAC Calculations Complete!") -- Notify the RANSAC calculations are complete

 if (openFilesAutomatically == true) then -- If the executable files are set to execute on simulation
end, do the following
 sim.launchExecutable(offlineMap) -- Launch the EXCEL offline map
 sim.launchExecutable(solutionRANSAC) -- Launch the RANSAC SFML solution
 --sim.launchExecutable(buildRANSAC) -- Build and run the RANSAC SFML solution

 end -- End of the conditional statement

 end -----[RANSAC OUTPUT]------

 end -- end of the conditional statement

end -- End of the function declaration

function sysCall_sensing() -- Robot sensing functionality

 currentRobotPosition = sim.getObjectPosition(pioneerObject, -1) -- Store the current position of
the robot (for all axes)

 currentRobotRotation = sim.getObjectOrientation(pioneerObject, -1) -- Store the current
orientation of the robot (for all axes)
 currentRobotHeading = math.deg(currentRobotRotation[3]) -- Store the robots current heading (Z
axis)

 robotHeading = math.deg(currentRobotRotation[3]) -- Store the robots current heading for
console output (Z axis)

 for i = 1, 2, 1 do -- For the 'X' and 'Y' axes of the robots position, do the following
 robotPosition[i] = currentRobotPosition[i] -- Store the current position of the robot for console
output (for all axes)
 end -- End of the iterative statement

 if (currentRobotHeading < 0) then -- If the robots current heading is smaller than zero (negative),
do the following
 currentRobotHeading = -(currentRobotHeading) -- Set the robots current heading to the robots
current heading negated (positive)
 end -- End of the conditional statement

 do -----[WANDERING]-----

 robotRotationTranslated[1] = math.deg(currentRobotRotation[1]) -- Store the robots current
orientation in the 'X' axis
 robotRotationTranslated[2] = math.deg(currentRobotRotation[2]) -- Store the robots current
orientation in the 'Y' axis

 if (robotRotationTranslated[1] < 0) then -- If the robots current orientation in the 'X' axis is smaller
than '0' degrees (negative), do the following
 robotRotationTranslated[1] = 359.9 -- Set the robots current orientation in the 'X' axis to '259.9'
degrees
 elseif (robotRotationTranslated[1] > 359.9) then -- If the robots current orientation in the 'X' axis is
larger than '359.9' degrees, do the following
 robotRotationTranslated[1] = 0 -- Set the robots current orientation in the 'X' axis to '0' degrees
 end -- End of the conditional statement

 if (robotRotationTranslated[2] < 0) then -- If the robots current orientation in the 'Y' axis is smaller
than '0' degrees (negative), do the following
 robotRotationTranslated[2] = 359.9 -- Set the robots current orientation in the 'Y' axis to '259.9'
degrees
 elseif (robotRotationTranslated[2] > 359.9) then -- If the robots current orientation in the 'Y' axis is
larger than '359.9' degrees, do the following
 robotRotationTranslated[2] = 0 -- Set the robots current orientation in the 'Y' axis to '0' degrees
 end -- End of the conditional statement

 robotCurrentHeading0to360 = math.deg(currentRobotRotation[3]) -- Store the robots current
heading for exploring unknown areas (Z axis)

 if (robotCurrentHeading0to360 < 0) then -- If the robots current heading is smaller than zero
(negative), do the following
 robotCurrentHeading0to360 = 360 + robotCurrentHeading0to360 -- Set the robots current
heading to the robots current heading translated
 end -- End of the conditional statement

 if (robotCurrentHeading0to360 < 0) then -- If the robots current heading translated is smaller than
'0' degrees, do the following
 robotCurrentHeading0to360 = 359.9 -- Set the robots current heading translated to '359.9'
degrees
 elseif (robotCurrentHeading0to360 > 359.9) then -- If the robots current heading translated is
larger than '359.9' degrees, do the following
 robotCurrentHeading0to360 = 0 -- Set the robots current heading translated to '0' degrees
 end -- End of the conditional statement

 if (robotUnexploredAreas == 0) then -- If robot has explored all areas of the map, do the following
 allAreasExplored = true -- All areas of the map have been explored
 end -- End of the conditional statement

 if (allAreasExplored == false) then -- If all of the areas of the environment have not been explored,
do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 robotDistanceToTargets[i] = math.sqrt((robotPosition[1] - targetPositions[i][1])^2 +
(robotPosition[2] - targetPositions[i][2])^2)
 end -- End of the iterative statement

 areaClosestTo = 0 -- Store the area that the robot is closest to (numerically)
 closestDistance = 0 -- Store the distance that the robot is from each area of the environment

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (closestDistance == 0) then -- If the closest distance has not been set, do the following
 areaClosestTo = i -- Store the current iteration (used for indexing)
 closestDistance = robotDistanceToTargets[i] -- Store the distance to the currently iterated
area as the closest area to the robot
 else -- If the closest distance has been set previously, do the following
 if (robotDistanceToTargets[i] < closestDistance) then -- If the robots current distance to the
currently iterated area is the closest distance to any area, do the following
 areaClosestTo = i -- Store the current iteration (used for indexing)
 closestDistance = robotDistanceToTargets[i] -- Store the distance to the currently iterated
area as the closest area to the robot
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (areaClosestTo == 1) then -- If the robot is situated closer to the 'top-left' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position

 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 1) then -- If the distance between the robots position
and area targets position is smaller than '1' metre, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Top Left] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 2) then -- If the robot is situated closer to the 'top-middle' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 0.6) then -- If the distance between the robots position
and area targets position is smaller than '0.6' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Top Middle] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "

 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 3) then -- If the robot is situated closer to the 'top-right' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 1) then -- If the distance between the robots position
and area targets position is smaller than '1' metre, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Top Right] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 4) then -- If the robot is situated closer to the 'middle-left' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following

 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 0.6) then -- If the distance between the robots position
and area targets position is smaller than '0.6' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Middle Left] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "

 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 5) then -- If the robot is situated closer to the 'centre' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 0.6) then -- If the distance between the robots position
and area targets position is smaller than '0.6' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area

 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Centre] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 6) then -- If the robot is situated closer to the 'middle-right' region of
the environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance

 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 0.6) then -- If the distance between the robots position
and area targets position is smaller than '0.6' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Middle Right] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 7) then -- If the robot is situated closer to the 'bottom-left' region of the
environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area

 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 1) then -- If the distance between the robots position
and area targets position is smaller than '1' metre, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Bottom Left] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 8) then -- If the robot is situated closer to the 'bottom-middle' region of
the environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +
 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following

 if (targetDifference[areaClosestTo] < 0.6) then -- If the distance between the robots position
and area targets position is smaller than '0.6' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Bottom Middle] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "
 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 elseif (areaClosestTo == 9) then -- If the robot is situated closer to the 'bottom-right' region of
the environment, do the following
 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= areaClosestTo) then -- If the currently iterated area is not the area that the robot is
closest to, do the following
 robotCurrentArea[i] = false -- The robot is not in the currently iterated area
 else -- If the currently iterated area is the area that the robot is closest to, do the following
 robotCurrentArea[i] = true -- The robot is in the currently iterated area
 end -- End of the conditional statement
 end -- End of the iterative statement

 targetDifference[areaClosestTo] = math.sqrt(((targetPositions[areaClosestTo][1] -
targetClosestReached[areaClosestTo][1])^2) +

 ((targetPositions[areaClosestTo][2] -
targetClosestReached[areaClosestTo][2])^2)) -- Store the difference between the robot and the
target for its exploration

 if (robotClosestToTarget[areaClosestTo] ~= -1) then -- If the robot has entered the area
before, do the following
 if (targetDifference[areaClosestTo] < robotClosestToTarget[areaClosestTo]) then -- If the
robots current distance to the area target is the closest it has been, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Set the closest
distance to the current difference
 end -- End of the conditional statement
 else -- If the robot has not entered the area before, do the following
 robotClosestToTarget[areaClosestTo] = targetDifference[areaClosestTo] -- Store the current
distance of the robot to the target, as the closest distance
 end -- End of the conditional statement

 targetClosestReached[areaClosestTo][1] = robotPosition[1] -- Store the robots current 'X'
position as the closest achieved position to the area target position
 targetClosestReached[areaClosestTo][2] = robotPosition[2] -- Store the robots current 'Y'
position as the closest achieved position to the area target position

 if (robotExploredArea[areaClosestTo] == false) then -- If the area the robot is current
positioned in has not been explored, do the following
 if (targetDifference[areaClosestTo] < 1.5) then -- If the distance between the robots position
and area targets position is smaller than '1.5' metres, do the following
 robotExploredArea[areaClosestTo] = true -- Mark the area as explored

 robotUnexploredAreas = robotUnexploredAreas - 1 -- Decrement the number of areas
that are unexplored

 areaExploredOutput[areaClosestTo] = "Yes" -- Output the area as explored

 if (robotExploringArea == areaClosestTo) then -- If the area is currently the target area for
exploration, do the following
 robotExploredAreaSelected = true -- The robot searches for another unexplored area
 end -- End of the conditional statement
 else -- If the distance between the robots position and area targets position is larger than
desired distance, do the following
 areaExploredOutput[areaClosestTo] = "No" -- Output the robot has not explored the area
 end -- End of the conditional statement
 end -- End of the conditional statement

 previousTargetDifference[areaClosestTo] = targetDifference[areaClosestTo] -- Store the
current distance to the target as the previous distance to the target (end of frame)

 if (debugMode == false) then -- If debug mode is not active, do the following
 printf("Robot Location [Bottom Right] Robot Position in Area ["
 .. string.format("%.2f", targetClosestReached[areaClosestTo][1]) .. ", "
 .. string.format("%.2f", targetClosestReached[areaClosestTo][2]) .. "] "
 .. "Closest [" .. string.format("%.2f", robotClosestToTarget[areaClosestTo]) .. "] "
 .. "Explored [" .. areaExploredOutput[areaClosestTo] .. "] "

 .. "Target Angle [" .. robotTargetExploreAngle .."] "
 .. "Heading [" .. robotCurrentHeading0to360 .. "] "
 .. "Difference [" .. robotDifferenceBetweenAngles .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget) .. "] "
 .. "Area Exploring [" .. exploringAreaOutput .. "] "
 .. "Areas Unexplored [" .. robotUnexploredAreas .. "]") -- Output robot exploration
information
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -----[WANDERING]-----

 do -----[MAPPING]-----
 sonarReadings = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} -- Set sonar readings (sensors
stay at '-1' if an object was not detected)

 for i = 1, 16, 1 do -- For all of the robots sensors, do the following
 result, distance = sim.readProximitySensor(sonarSensors[i]) -- Determine whether an object was
detected and at what distance

 if (result > 0) then -- If an object was detected, do the following
 sonarReadings[i] = distance -- Set the currently iterated sonar sensor reading to the detected
distance
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -----[MAPPING]-----

 do -----[CONSOLE ROBOT DETECTED OBJECT POSITION CALCULATIONS]-----

 smallestLeftValue = { 0, 0 } -- Create and initialise an array for storing the sensor and distance to
the closest object detected, relative to the robots left side
 smallestRightValue = { 0, 0 } -- Create and initialise an array for storing the sensor and distance
to the closest object detected, relative to the robots right side

 smallestLeftValueSet = false -- Determine whether the initial value of the robots left detection
has been set for comparing in future iterations
 smallestRightValueSet = false -- Determine whether the initial value of the robots right
detection has been set for comparing in future iterations

 leftDetections = 0 -- Store the number of sensors that have detected an object, relative to the
left side of the robot
 rightDetections = 0 -- Store the number of sensors that have detected an object, relative to the
right side of the robot

 for i = 1, 4, 1 do -- For the robots front-left facing sensors, do the following
 if (sonarReadings[i] > 0) then -- If the distance detected by the currently iterated sensor is
larger than '0', do the following
 leftDetections = leftDetections + 1 -- Increment the left detection counter
 end -- End of the conditional statement
 end -- End of the iterative statement

 for i = 13, 16, 1 do -- For the robots back-left facing sensors, do the following
 if (sonarReadings[i] > 0) then -- If the distance detected by the currently iterated sensor is
larger than '0', do the following
 leftDetections = leftDetections + 1 -- Increment the left detection counter
 end -- End of the conditional statement
 end -- End of the iterative statement

 for i = 5, 12, 1 do -- For the robots right facing sensors, do the following
 if (sonarReadings[i] > 0) then -- If the distance detected by the currently iterated sensor is
larger than '0', do the following
 rightDetections = rightDetections + 1 -- Increment the right detection counter
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (leftDetections + rightDetections > 0) then -- If a robots sensor has detected an object, do the
following
 for i = 1, 16, 1 do -- For all of the robots sonar sensors, do the following
 if (sonarReadings[i] > 0) then -- If the distance detected by the currently iterated sensor is
larger than '0', do the following
 if (i >= 1 and i <= 4) then -- If the currently iterated sensor is a front-left facing sensor, do
the following
 if (smallestLeftValueSet == false) then -- If the initial left detection value has been set,
do the following
 smallestLeftValue[1] = i -- Store the sensor that has detected the closest object to the
robot
 smallestLeftValue[2] = sonarReadings[i] -- Store the distance detected to the closest
object to the robot

 smallestLeftValueSet = true -- The initial left detection value has been set
 else -- If the initial left detection value has not been set, do the following
 if (sonarReadings[i] < smallestLeftValue[2]) then -- If current distance detected by the
currently iterated sensor is smaller than the current smallest distance detected to an object, do the
following
 smallestLeftValue[1] = i -- Store the sensor that has detected the closest object to
the robot
 smallestLeftValue[2] = sonarReadings[i] -- Store the distance detected from the
sensor to the closest object
 end -- End of the conditional statement
 end -- End of the conditional statement
 elseif (i >= 13 and i <= 16) then -- If the currently iterated sensor is a back-left facing
sensor, do the following
 if (sonarReadings[i] < smallestLeftValue[2]) then -- If current distance detected by the
currently iterated sensor is smaller than the current smallest distance detected to an object, do the
following
 smallestLeftValue[1] = i -- Store the sensor that has detected the closest object to the
robot
 smallestLeftValue[2] = sonarReadings[i] -- Store the distance detected from the
sensor to the closest object
 end -- End of the conditional statement
 elseif (i >= 5 and i <= 8) then -- If the currently iterated sensor is a front-right facing
sensor, do the following

 if (smallestRightValueSet == false) then -- If the initial right detection value has been
set, do the following
 smallestRightValue[1] = i -- Store the sensor that has detected the closest object to
the robot
 smallestRightValue[2] = sonarReadings[i] -- Store the distance detected from the
sensor to the closest object

 smallestRightValueSet = true -- The initial right detection value has been set
 else -- If the initial right detection value has been set, do the following
 if (sonarReadings[i] < smallestRightValue[2]) then -- If current distance detected by
the currently iterated sensor is smaller than the current smallest distance detected to an object, do
the following
 smallestRightValue[1] = i -- Store the sensor that has detected the closest object to
the robot
 smallestRightValue[2] = sonarReadings[i] -- Store the distance detected from the
sensor to the closest object
 end -- End of the conditional statement
 end -- End of the conditional statement
 elseif (i >= 9 and i <= 12) then -- If the currently iterated sensor is a back-right facing
sensor, do the following
 if (sonarReadings[i] < smallestRightValue[2]) then -- If current distance detected by the
currently iterated sensor is smaller than the current smallest distance detected to an object, do the
following
 smallestRightValue[1] = i -- Store the sensor that has detected the closest object to
the robot
 smallestRightValue[2] = sonarReadings[i] -- Store the distance detected from the
sensor to the closest object
 end -- End of the conditional statement
 end -- End of the conditional statement

 leftMostDetectedObject[1] = smallestLeftValue[1] -- Set the left facing sensor that has
detected an object as the closest distance
 leftMostDetectedObject[2] = smallestLeftValue[2] -- Set the closest object detected on
the left side of the robot to the smallest distance detected by a left facing sensor

 rightMostDetectedObject[1] = smallestRightValue[1] -- Set the right facing sensor that
has detected an object as the closest distance
 rightMostDetectedObject[2] = smallestRightValue[2] -- Set the closest object detected on
the right side of the robot to the smallest distance detected by a right facing sensor
 end -- End of the conditional statement
 end -- End of the iterative statement
 end -- End of the conditional statement

 if (leftDetections == 0 or leftMostDetectedObject[2] == 0) then
 leftString = "NO OBJECT" -- Set the robots left detection string to 'no object' (no object
detected)
 else
 leftString = "Sensor [" .. leftMostDetectedObject[1] .. "] at " .. string.format("%.2f",
leftMostDetectedObject[2]) .. " m" -- Set the robots left detection string to the sensor that has
detected an object at the closest distance and the corresponding distance detected
 end -- End of the conditional statement

 if (rightDetections == 0 or rightMostDetectedObject[2] == 0) then
 rightString = "NO OBJECT" -- Set the robots right detection string to 'no object' (no object
detected)
 else
 rightString = "Sensor [" .. rightMostDetectedObject[1] .. "] at " .. string.format("%.2f",
rightMostDetectedObject[2]) .. " m" -- Set the robots right detection string to the sensor that has
detected an object at the closest distance and the corresponding distance detected
 end -- End of the conditional statement

 end -----[CONSOLE ROBOT DETECTED OBJECT POSITION CALCULATIONS]-----

 do -----[SENSING]-----
 accumulatedDistance = 0 -- Reset the accumulated distance

 for i = 1, 16, 1 do -- For all of the robots sonar sensors, do the following
 result, distance = sim.readProximitySensor(sonarSensors[i]) -- Store whether the currently
iterated sonar sensor detected an object and its distance from the robots position if so
 if (result > 0) and (distance < noDetectionDistance) then -- If the currently iterated sonar
sensor detected an object and its distance from the robots current position is within the robots
detectable range, do the following
 if (distance < maxDetectionDistance) then -- If the objects detected distance from the
robots current position is wihtin the robots maximum detection distance, do the following
 distance = maxDetectionDistance -- Set the objects detected distance to the robots
maximum detection distance
 end -- End of the conditional statement
 objectDetected[i] = 1 - ((distance - maxDetectionDistance) / (noDetectionDistance -
maxDetectionDistance)) -- Set the currently iterated object detection array element (parallel to the
sonar sensor) to the calculated distance detected
 detectedDistance[i] = distance -- Store the curently iterated sensor distance reading into
the detected distance array
 else -- Else if the currently iterated sonar sensor has not detected an object, do the following
 objectDetected[i] = 0 -- Set the currently iterated object detection array element (parallel to
the sonar sensor) to '0' (no object detected)
 detectedDistance[i] = 0 -- Set the currently iterated detected distance array element
(parallel to the sonar sensor) to '0' (no object detected)
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (edgeEndReached == false) then -- If the robot has not reached the edge of a followed object or
has not entered the 'edge following' phase, do the following

 edgeEndReachedAvoidTimer = math.random(3, 5) -- Generate a random duration of time for the
robot to avoid for, when the robot has finished following an edge of an object (prevent edge
following loop)

 if (robotIsAvoiding == false) then -- If the robot is not in the 'avoiding' phase, do the following
 for i = 1, 8, 1 do -- For all of the robots sonar sensors, do the following
 if (detectedDistance[i] > 0) then -- If an object has been detected from the currently
iterated sonar sensor, do the following

 accumulatedDistance = accumulatedDistance + detectedDistance[i] -- Add and equal the
current accumulated distance with the currently iterated sonar sensor reading
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (accumulatedDistance > 0) then -- If an object has been detected, do the following

 if (detectedDistance[1] > 0 and detectedDistance[3] == 0) then -- If the robots left-most
front facing sensor has detected an object and one of the robots front-left sensors has not detected
an object (straighten), do the following

 edgeFollowingRightDetected = false -- The robot will not enter edge following for its right
side

 sensorDetectedIncrementer = 0 -- Reset the number of sensors with a detected distance

 for i = 4, 8, 1 do -- For the robots other front facing sensors, do the following
 if (detectedDistance[i] > 0) then -- If the currently iterated sensor has detected an
object, do the following
 sensorDetectedIncrementer = sensorDetectedIncrementer + 1 -- Increment the
number of sensors that have detected an object
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (sensorDetectedIncrementer == 0) then -- If the robots other front facing sensors have
not detected an object, do the following
 edgeFollowingLeftDetected = true -- Set the robot to enter edge following for its left
side
 else -- If the robots other front facing sensors have detected an object, do the following
 edgeFollowingLeftDetected = false -- The robot will not enter (or will exit) edge
following for its left side
 end -- End of the conditional statement

 elseif (detectedDistance[8] > 0 and detectedDistance[6] == 0) then -- If the robots right-
most front facing sensor has detected an object and one of the robots front-right sensors has not
detected an object (straighten), do the following

 edgeFollowingLeftDetected = false -- The robot will not enter edge following for its left
side

 sensorDetectedIncrementer = 0 -- Reset the number of sensors with a detected distance

 for i = 1, 5, 1 do -- For the robots other front facing sensors, do the following
 if (detectedDistance[i] > 0) then -- If the currently iterated sensor has detected an
object, do the following
 sensorDetectedIncrementer = sensorDetectedIncrementer + 1 -- Increment the
number of sensors that have detected an object
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (sensorDetectedIncrementer == 0) then -- If the robots other front facing sensors have
not detected an object, do the following
 edgeFollowingRightDetected = true -- Set the robot to enter edge following for its right
side
 else -- If the robots other front facing sensors have detected an object, do the following
 edgeFollowingRightDetected = false -- The robot will not enter (or will exit) edge
following for its right side
 end -- End of the conditional statement
 else -- If the robots left-most or right-most front-facing sensor does not detect an object
when their other front facing sensor does not detect an object, do the following
 edgeFollowingLeftDetected = false -- The robot will not enter (or will exit) edge following
for its left side
 edgeFollowingRightDetected = false -- The robot will not enter (or will exit) edge
following for its right side
 end -- End of the conditional statement

 if (edgeFollowingLeftDetected == true or edgeFollowingRightDetected == true) then -- If the
robot has been set to follow the edge of an object on its right or left side, do the following
 robotIsEdgeFollowing = true -- Robot enters the 'edge following' state
 edgeEndReached = false -- The end of an objects followed edge has not been reached

 edgeFollowingTimer = edgeFollowingTimer + sim.getSimulationTimeStep() -- Subtract and
equal the edge following timer for the time passed since the last frame was made
 else -- If the robot has not been set to follow the edge of an object on either of its sides, do
the following
 robotIsEdgeFollowing = false -- Robot exits the 'edge following' phase
 robotIsAvoiding = true -- Robot enters the 'avoiding' phase

 if (edgeFollowingTimer > 3) then -- If the time the robot has been following an edge of an
object is larger than '3' seconds, do the following
 --edgeEndReached = true -- The end of an objects followed edge has been reached
 else -- If the time the robot has been
 edgeFollowingTimer = 0 -- Reset the edge following timer
 end -- End of the conditional statement
 end -- End of the conditional statement

 else -- If an object has not been detected, do the following
 robotIsAvoiding = false -- Robot exits the 'avoiding' phase
 robotIsEdgeFollowing = false -- Robot exits the edge following' phase
 edgeEndReached = false -- The end of an objects followed edge has not been reached
 end -- End of the conditional statement
 end -- End of the conditional statement

 else -- If the end of an objects followed edge has been reached, do the following

 if (robotIsAvoiding == false) then -- If the robot has not entered the 'avoiding' phase, do the
following
 robotIsAvoiding = true -- Robot enters the 'avoiding' phase
 end -- End of the conditional statement

 end -- End of the conditional statement

 end -----[SENSING]-----

end -- End of the function declaration

function sysCall_actuation() -- Robot actuation functionality

 do -----[CONSOLE ROBOT SPEED CALCULATIONS]-----
 Distance = { 0, 0, 0 } -- Create and initialise an array for the difference between the robots

 currentPosition = sim.getObjectPosition(sim.getObjectHandle("Pioneer_p3dx"), -1) -- Store the
robots current position

 for i = 1, 3, 1 do -- For the number of elements in the table/ array, do the following
 Distance[i] = currentPosition[i] - previousPosition[i] -- Calculate the difference between the
positions
 end -- End of the iterative statement

 robotDistanceTravelled = math.sqrt((Distance[1] * Distance[1]) + (Distance[2] * Distance[2]) +
(Distance[3] * Distance[3])) -- Set the robots distance travelled to the magnitude of the difference
between vectors (previous and current positions)

 Speed = robotDistanceTravelled / sim.getSimulationTimeStep() -- Speed = Distance / Time

 robotDistanceTravelled = 0 -- Reset the robots distance travelled

 robotSpeed = Speed -- Set the robots speed to the calculate speed

 Speed = 0 -- Reset the robots calculated speed (local)

 previousPosition = currentPosition -- Set the robots previous position to the robots current
position (end of frame)
 end -----[CONSOLE ROBOT SPEED CALCULATIONS]-----

 do -----[MAPPING]-----
 calculateMapping() -- Function call, calculate the robots sonar readings (unconditional)
 end -----[MAPPING]-----

 if (robotIsAvoiding == true) then -- If the robot 'avoiding' phase has been triggered, do the
following
 robotAvoiding() -- Function call, set the robot to avoid obstacles
 elseif (robotIsEdgeFollowing == true) then -- Else if the robot 'edge-following' phase has been
triggered, do the following
 robotEdgeFollowing() -- Function call, set the robot to follow an edge
 else -- Else if the robot is neither 'avoiding' or 'edge-following', do the following
 robotWandering() -- Function call, set the robot to wander the scene
 end -- End of the conditional statement

end -- End of the function declaration

function robotAvoiding() -- Robot avoidance strategy

 do -----[FINISHED FOLLOWING EDGE TRANSITION]-----
 if (edgeEndReached == true) then -- If the edge of an object has been reach after following it, do
the following

 edgeEndReachedAvoidTimer = edgeEndReachedAvoidTimer - sim.getSimulationTimeStep() --
Subtract the time passed since the last frame was made away from the robot avoid timer

 if (edgeEndReachedAvoidTimer < 0) then -- If the robot avoid timer has depleted, do the
following
 edgeEndReached = false -- The robot has reached the edge of an object it was following and
has moved away from detected objects (prevent edge following loop)
 edgeFollowingTimer = 0 -- Reset the edge following timer
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -----[FINISHED FOLLOWING EDGE TRANSITION]-----

 robotWanderingReset = true -- The robots 'wandering' phase configuration requires to be reset
(was interrupted)

 do -----[CALCULATIONS AND GENERAL AVOIDANCE]-----
 if (robotIsReversing == false and robotIsTurning == false) then -- If the robot has not entered the
'reversing' and 'turning' phase, do the following

 distanceComparison = 0 -- Reset the comparative distance between sensors

 for i = 3, 4, 1 do -- For the robots front facing sensors, do the following
 if (detectedDistance[i] and detectedDistance[9 - i] > 0) then -- If the currently iterated sensors
detected distance and its opposing sensors detected distance is larger than '0' (object was detected),
do the following
 if (detectedDistance[i] - detectedDistance[9 - i] < 0) then -- If the difference between the
currently iterated sensors detected distance and its opposing sensors detected distance is smaller
than '0m' (negative), do the following
 distanceComparison = -(detectedDistance[i] - detectedDistance[9 - i]) -- Set the
comparative distance to the difference between the sensors detected distance (positively)
 elseif (detectedDistance[i] - detectedDistance[9 - i] > 0) then -- If the difference between
the currently iterated sensors detected distance and its opposing sensors detected distance is larger
than '0m' (positive), do the following
 distanceComparison = detectedDistance[i] - detectedDistance[9 - i] -- Set the comparative
distance to the difference between the sensors detected distance
 else -- If the detected distances are equal, do the following
 distanceComparison = 0 -- Set the comparative distance to '0'
 end -- End of the conditional statement

 if (distanceComparison < 0.005) then -- If the difference between the sensors detected
distances is smaller than '0.005m', do the following

 if (debugMode == true) then -- If debug mode is active, do the following
 --print("Equal distance to object detected from sensors [" .. i .. "] and [" .. (9 - i) .. "]") --
Output the sensors that have detected object(s) at an equal distance
 end -- End of conditional statement

 robotIsReversing = true -- Set the robot to enter its 'reversing' phase
 reverseTurnTimer = math.random(5, 20) / 10 -- Generate a time amount for the robot to
turn away from a detected object
 rotationDirection = math.random(1, 2) -- Generate a rotation direction determining the
direction the robot turns after reversing
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the iterative statement

 do -----[BRAITENBERG AVOIDANCE]-----
 if (robotIsReversing == false) then -- If the robot has not entered the 'reversing' phase, do the
following
 if (robotIsTurning == false) then -- If the robot has not entered the 'turning' phase, do the
following
 if (robotIsStuck == false) then -- If the robot has not entered the 'stuck' phase, do the
following

 accumulatedFrontLeftSensorDistance = 0 -- Reset the robots accumulated front-left
sensor distance
 accumulatedFrontRightSensorDistance = 0 -- Reset the robots accumulated right-left
sensor distance

 for i = 1, 4, 1 do -- For all of the robots front-left sensors, do the following
 accumulatedFrontLeftSensorDistance = accumulatedFrontLeftSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated front-left sensor
 end -- End of the iterative statement

 for i = 5, 8, 1 do -- For all of the robots front-right sensors, do the following
 accumulatedFrontRightSensorDistance = accumulatedFrontRightSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated front-right
sensor
 end -- End of the iterative statement

 leftWheelVelocity = defaultVelocity -- Set the robots left wheel motor velocity to the
default velocity
 rightWheelVelocity = defaultVelocity -- Set the robots right wheel motor velocity to the
default velocity

 frontSensorDistanceDifference = accumulatedFrontLeftSensorDistance -
accumulatedFrontRightSensorDistance -- Store the difference in distance between either front facing
side of sensors

 if (frontSensorDistanceDifference < 0) then -- If the difference in distance between either
front facing side of sensors is smaller than '0' (negative), do the following
 frontSensorDistanceDifference = -(frontSensorDistanceDifference) -- Negate the
difference in distance between either front facing side of sensors
 end -- End of conditional statement

 if (frontSensorDistanceDifference <= (noDetectionDistance - maxDetectionDistance) +
0.01) then -- If the difference in distance between the sensor readings is smaller than or equal to the
difference in distance between the robots no detection distance and the robots maximum detection
distance (prevent oscillation), do the following
 if (edgeEndReached == true) then -- If the robot has finished following an objects edge,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Moving Forwards [End of Followed Edge Reached] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is moving forwards as the end of an objects followed edge
has been reached
 end -- End of the conditional statement
 else -- If the robot has not finished following an objects edge, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Moving Forwards "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is moving forwards
 end -- End of the conditional statement
 end -- End of the conditional statement

 leftWheelVelocity = defaultVelocity -- Set the robots left wheels motor velocity to the
default velocity
 rightWheelVelocity = defaultVelocity -- Set the robots right wheels motor velocity to
the default velocity

 elseif (accumulatedFrontLeftSensorDistance > accumulatedFrontRightSensorDistance)
then -- If the front-left sensors detected distance is larger than the front-right sensors detected
distance, do the following
 if (edgeEndReached == true) then -- If the robot has finished following an objects edge,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "

 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Right [End of Followed Edge Reached] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning right as the end of an objects followed edge has
been reached
 end -- End of the condtional statement
 else -- If the robot has not finished following an objects edge, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Right "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning right
 end -- End of the conditional statement
 end -- End of the conditional statement

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 rightWheelVelocity = rightWheelVelocity + braitenbergRight[i] * objectDetected[i] --
Set the robots right wheels motor velocity to the calculated velocity (Braitenberg)
 end -- End of the iterative statement
 elseif (accumulatedFrontRightSensorDistance > accumulatedFrontLeftSensorDistance)
then -- If the front-right sensors detected distance is larger than the front-left sensors detected
distance, do the following
 if (edgeEndReached == true) then -- If the robot has finished following an objects edge,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Left [End of Followed Edge Reached] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning left as the end of an objects followed edge has
been reached
 end -- End of the conditional statement
 else -- If the robot has not finished following an objects edge, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Left "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning left

 end -- End of the conditional statement
 end -- End of the conditional statement

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 leftWheelVelocity = leftWheelVelocity + braitenbergLeft[i] * objectDetected[i] -- Set
the robots left wheels motor velocity to the calculated velocity (Braitenberg)
 end -- End of the iterative statement
 else -- If the sensors detected distance is equal, do the following
 if (edgeEndReached == true) then -- If the robot has finished following an objects edge,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Moving Forwards [End of Followed Edge Reached] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is moving forwards as the end of an objects followed edge
has been reached
 end -- End of the conditional statement
 else -- If the robot has not finished following an objects edge, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " ..
string.format("%.2f", robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Moving Forwards "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is moving forwards
 end -- End of the conditional statement
 end -- End of the conditional statement

 leftWheelVelocity = defaultVelocity -- Set the robots left wheels motor velocity to the
default velocity
 rightWheelVelocity = defaultVelocity -- Set the robots right wheels motor velocity to
the default velocity
 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots right
wheels motor velocity to the calculated velocity

 end -- End of conditional statement
 end -- End of conditional statement
 end -- End of conditional statement
 end -----[BRAITENBERG AVOIDANCE]-----
 end -- End of conditional statement
 end -----[CALCULATIONS AND GENERAL AVOIDANCE]-----

 do -----[REVERSING]-----
 if (robotIsStuck == false) then -- If the robot has not entered the 'stuck' phase, do the following
 if (robotIsTurning == false) then -- If the robot has not entered the 'turning' phase, do the
following
 if (robotIsReversing == false) then -- If the robot has not entered the 'reversing' phase, do the
following
 -- Reset variables (if required)
 else -- If the robot has entered the 'reversing' phase, do the following

 accumulatedFrontDistance = 0 -- Reset the accumulated distance of the robots front-facing
sensors
 accumulatedBackDistance = 0 -- Reset the accumulated distance of the robots back-facing
sensors

 for i = 1, 7, 1 do -- For all of the robots front-facing sensors (not 90 degree facing sensor), do
the following
 accumulatedFrontDistance = accumulatedFrontDistance + detectedDistance[i] -- Add and
equal the distance detected by the currently iterated front-facing sensor
 end -- End of the iterative statement

 for i = 9, 15, 1 do -- For all of the robots back-facing sensors (not 90 degree facing sensor),
do the following
 accumulatedBackDistance = accumulatedBackDistance + detectedDistance[i] -- Add and
equal the distance detected by the currently iterated back-facing sensor
 end -- End of the iterative statement

 if (accumulatedFrontDistance > 0) then -- If the robots front-facing sensors have detected
an object, do the following
 if (accumulatedBackDistance == 0) then -- If the robots back facing sensors have not
detected an object, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State: [Avoiding] -----> Reversing "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is reversing
 end -- End of the conditional statement

 leftWheelVelocity = -(defaultVelocity) -- Set the robots left wheels motor velocity to the
default velocity negated
 rightWheelVelocity = -(defaultVelocity) -- Set the robots right wheels motor velocity to
the default velocity negated

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity

 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots
right wheels motor velocity to the calculated velocity
 else -- If the robots back-facing sensors have detected an object, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Stopped Reversing [Object Detected Behind "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot has stopped reversing due to an object behind
 end -- End of the conditional statement

 robotIsTurning = true -- Set the robot to enter the 'turning' phase
 robotIsReversing = false -- Set the robot to exit the 'reversing' phase
 end -- End of the conditional statement
 else -- If the robots front-facing sensors no longer detect an object, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Finished Reversing "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot has finished reversing
 end -- End of conditional statement

 robotIsTurning = true -- Set the robot to enter the 'turning' phase
 robotIsReversing = false -- Set the robot to exit the 'reversing' phase
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -----[REVERSING]-----

 do -----[TURNING]-----
 if (robotIsReversing == false) then -- If the robot has not entered the 'reversing' phase, do the
following
 if (robotIsTurning == false) then -- If the robot has not entered the 'turning' phase, do the
following
 robotTurningRight = false -- Reset the robots 'turning left' phase
 robotTurningLeft = false -- Reset the robots 'turning right' phase
 robotRotationSet = false -- Unset the robots rotationl direction when turning
 rotationDirection = 0 -- Reset the robots rotation direction
 reverseTurnTimer = 0 -- Reset the robots turning timer
 else -- If the robot has entered the 'turning' phase, do the following

 sensorsDetected = 0 -- Reset the number of sensors that have detected an object

 for i = 1, 16, 1 do -- For all of the robots sensors, do the following
 if (detectedDistance[i] > 0) then -- If the currently iterated sensors detected distance is
larger then '0m' (object has been detected), do the following
 sensorsDetected = sensorsDetected + 1 -- Increment the number of sensors that have
detected an object
 end -- End of conditional statement
 end -- End of the iterative statement

 if (sensorsDetected >= 6) then -- If the number of sensors that has detected an object is equal
to or larger than '8', do the following
 robotIsStuck = true -- Set the robot to enter the 'stuck' phase
 robotIsTurning = true -- Set the robot to enter the 'turning' phase
 else -- If the number of sensors that has detected an object is less than '8', do the following
 robotIsStuck = false -- The robot will
 end -- End of the conditional statement

 if (robotRotationSet == false) then -- If the robots rotation direction has not been set, do the
following

 accumulatedFrontLeftSensorDistance = 0 -- Reset the accumulated distance of the robots
front-left sensors
 accumulatedFrontRightSensorDistance = 0 -- Reset the accumulated distance of the robots
front-right sensors

 accumulatedBackLeftSensorDistance = 0 -- Reset the accumulated distance of the robots
back-left sensors
 accumulatedBackRightSensorDistance = 0 -- Reset the accumulated distance of the robots
back-right sensors

 for i = 1, 4, 1 do -- For all of the robots front-left sensors, do the following
 accumulatedFrontLeftSensorDistance = accumulatedFrontLeftSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated front-left sensor
 end -- End of the iterative statement

 for i = 13, 16, 1 do -- For all of the robots back-left sensors, do the following
 accumulatedBackLeftSensorDistance = accumulatedBackLeftSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated back-left sensor
 end -- End of the iterative statement

 for i = 5, 8, 1 do -- For all of the robots front-right sensors, do the following
 accumulatedFrontRightSensorDistance = accumulatedFrontRightSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated front-right
sensor
 end -- End of the iterative statement

 for i = 9, 12, 1 do -- For all of the robots back-right sensors, do the following
 accumulatedBackRightSensorDistance = accumulatedBackRightSensorDistance +
detectedDistance[i] -- Add and equal the distance detected by the currently iterated back-right
sensor
 end -- End of the iterative statement

 if (accumulatedFrontLeftSensorDistance > accumulatedFrontRightSensorDistance) then -- If
the robots front-left sensors detect objects further away than the robots front-right sensors, do the
following
 robotTurningRight = true -- Set the robot to enter the 'turning right' phase
 elseif (accumulatedFrontRightSensorDistance > accumulatedFrontLeftSensorDistance) then
-- If the robots front-right sensors detect objects further away than the robots front-left sensors, do
the following
 robotTurningLeft = true -- Set the robot to enter the 'turning left' phase
 elseif (accumulatedBackRightSensorDistance > accumulatedBackLeftSensorDistance) then --
If the robots back-right sensors detect objects further away than the robots back-left sensors, do the
following
 robotTurningRight = true -- Set the robot to enter the 'turning right' phase
 elseif (accumulatedBackLeftSensorDistance > accumulatedBackRightSensorDistance) then --
If the robots back-left sensors detect objects further away than the robots back-right sensors, do the
following
 robotTurningLeft = true -- Set the robot to enter the 'turning left' phase
 else -- If the sensor distances are equal (randomise), do the following
 if (rotationDirection == 1) then -- If the rotation direction is equal to '1', do the following
 robotTurningRight = true -- Set the robot to enter the 'turning right' phase
 else -- If the rotation direction is equal to '2', do the following
 robotTurningLeft = true -- Set the robot to enter the 'turning left' phase
 end -- End of the conditional statement
 end -- End of the conditional statement
 robotRotationSet = true -- The robots rotation direction has been set
 end -- End of the conditional statement

 do -----[TURNING DIRECTION]-----
 if (robotRotationSet == true) then -- If the robots rotation direction has been set (above), do
the following
 if (robotIsStuck == true) then -- If the robot has entered the 'stuck' phase, do the following
 if (robotTurningLeft == true) then -- If the robot is turning left, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Left [Robot Stuck] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning left, robot is stuck
 end -- End of the conditional statement

 if (detectedDistance[4] + detectedDistance[5] ~= 0) then -- If an object is detected in
front of robots facing direction, do the following
 leftWheelVelocity = -(defaultVelocity) -- Set the robots left wheel motors velocity to
the default velocity negated
 rightWheelVelocity = defaultVelocity -- Set the robots right wheel motors velocity to
the default velocity

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity

 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots
right wheels motor velocity to the calculated velocity
 else -- If an object is no longer detected in front of robots facing direction, do the
following
 robotIsStuck = false -- Set the robot to exit the 'stuck' phase
 robotIsTurning = false -- Set the robot to exit the 'turning' phase
 end -- End of conditional statement
 else -- If the robot is turning right, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Right [Robot Stuck] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning right, robot is stuck
 end -- End of the conditional statement

 if (detectedDistance[4] + detectedDistance[5] ~= 0) then -- If an object is detected in
front of robots facing direction, do the following
 leftWheelVelocity = defaultVelocity -- Set the robots left wheel motors velocity to the
default velocity
 rightWheelVelocity = -(defaultVelocity) -- Set the robots right wheel motors velocity
to the default velocity negated

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots
right wheels motor velocity to the calculated velocity
 else -- If an object is no longer detected in front of robots facing direction, do the
following
 robotIsStuck = false -- Set the robot to exit the 'stuck' phase
 robotIsTurning = false -- Set the robot to exit the 'turning' phase
 end -- End of the conditional statement
 end -- End of the conditional statement
 else -- If the robot has not entered the 'stuck' phase, do the following
 if (robotTurningLeft == true) then -- If the robot is turning left, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Left [After Reversing] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot is turning left, after reversing
 end -- End of the conditional statement

 leftWheelVelocity = -(defaultVelocity) -- Set the robots left wheel motors velocity to the
default velocity negated

 rightWheelVelocity = defaultVelocity -- Set the robots right wheel motors velocity to
the default velocity

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots
right wheels motor velocity to the calculated velocity

 reverseTurnTimer = reverseTurnTimer - sim.getSimulationTimeStep() -- Subtract and
equal the time passed since the last frane was made from the turn timer value

 if (reverseTurnTimer < 0) then -- If the time has depleted, do the following
 robotIsTurning = false -- Set the robot to exit the 'turning' phase
 end -- End of the conditional statement
 elseif (robotTurningRight == true) then -- If the robot is turning right, do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Avoiding] -----> Turning Right [After Reversing] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot turning right, after reversing
 end -- End of the conditional statement

 leftWheelVelocity = defaultVelocity -- Set the robots left wheel motors velocity to the
default velocity
 rightWheelVelocity = -(defaultVelocity) -- Set the robots right wheel motors velocity to
the default velocity negated

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the robots left
wheels motor velocity to the calculated velocity
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the robots
right wheels motor velocity to the calculated velocity

 reverseTurnTimer = reverseTurnTimer - sim.getSimulationTimeStep() -- Subtract and
equal the time passed since the last frane was made from the turn timer value

 if (reverseTurnTimer < 0) then -- If the time has depleted, do the following
 robotIsTurning = false -- Set the robot to exit the 'turning' phase
 end -- End of the conditional statement
 else -- If no rotation direction is assigned, do the following (debugging)
 if (debugMode == true) then -- If debug mode is active, do the following
 print("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "Robot has no rotation direction set! "

 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot has no rotation direction set
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -----[TURNING DIRECTION]-----

 end -- End of the conditional statement
 end -- End of the conditional statement
 end -----[TURNING]-----

 do -----[EXIT]-----
 if (robotIsTurning == false and robotIsReversing == false and robotIsStuck == false) then -- If the
robot has not entered the 'turning', 'reversing' and 'stuck' phase, do the following

 robotIsAvoiding = false -- Set the robot to exit the 'avoiding' phase

 end -- End of the conditional statement
 end -----[EXIT]-----

end -- End of the function declaration

function robotWandering() -- Robot wandering strategy

 if(robotWanderingReset == true) then -- If the robots 'wandering' phase requires to be reset
(other phase interruption), do the following

 do -----[RESET ALL WANDERING VARIABLES]-----
 wanderingTurnAngle = 0 -- Reset the robots wandering turn angle

 wanderingForwardDistance = 0 -- Reset the robots wandering forward distance

 robotPosition = { 0, 0, 0 } -- Reset the robots position incrementer

 currentRobotPosition = { 0, 0, 0 } -- Robots current position table/ array
 previousRobotPosition = { 0, 0, 0 } -- Robots previous position table/ array
 accumulatedForwardDistance = 0 -- Accumulated distance the robot has moved forwards

 wanderingForwardDistanceSet = false -- Reset the robots wandering forward distance

 robotRotation = 0 -- Reset the robots rotation incrementer

 currentRobotRotation = { 0, 0, 0 } -- Reset the robots current rotation table/ array
 accumulatedRotationAngle = 0 -- Reset the accumulated angle that the robot rotates towards

 currentRobotHeading = 0 -- Reset the robots current heading (facing direction)
 previousRobotHeading = 0 -- Reset the robots previous heading (facing direction)

 robotIsRotating = false -- The robot has exit the 'rotating' phase
 end -----[RESET ALL WANDERING VARIABLES]-----

 robotWanderingReset = false -- The robots 'wandering' phase configuration has been reset

 else -- If the robots 'wandering' phase does not require to be reset, do the following
 if (robotIsRotating == false) then -- If the robot has not entered the 'rotating' phase, do the
following

 do -----[RESET ROTATING VARIABLES]-----
 robotRotation = 0 -- Reset the robots rotation incrementer

 robotRotationSet = false -- Reset the robots rotation direction

 robotTurningLeft = false -- Reset the robots 'turning left' phase
 robotTurningRight = false -- Reset the robots 'turning right' phase

 wanderingTurnAngle = 0 -- Reset the robots wandering turning angle
 end -----[RESET ROTATING VARIABLES]-----

 if (wanderingForwardDistanceSet == false) then -- If the wandering forward distance has not
been set, do the following
 wanderingForwardDistance = math.random(1, 5) -- Generate a distance for the robot to
traverse forwards for

 do -----[RESET POSITION VARIABLES]-----
 accumulatedForwardDistance = 0 -- Reset the robots accumulated distance travelled

 Position = { 0, 0, 0 } -- Reset the robots position incrementer

 currentRobotPosition = { 0, 0, 0 } -- Reset the robots current position table/ array

 previousRobotPosition = { 0, 0, 0 } -- Reset the robots previous position table/ array

 accumulatedForwardDistance = 0 -- Reset the accumulated distance that the robot moves
forwards
 end -----[RESET POSITION VARIABLES]-----

 wanderingForwardDistanceSet = true -- The robots wandering forward distance has been
set
 end -- End of the conditional statement

 if (previousRobotPosition[1] > 0 or previousRobotPosition[2] > 0 or previousRobotPosition[3]
> 0) then -- If the robots previous position is a position (not equal to '0'), do the following

 for i = 1, 2, 1 do -- For the number of elements in the table/ array, do the following
 Position[i] = currentRobotPosition[i] - previousRobotPosition[i] -- Set the robots position
to be the difference between the robots current position and the robots previous position
 end -- End of the iterative statement

 accumulatedForwardDistance = accumulatedForwardDistance + math.sqrt((Position[1] *
Position[1]) + (Position[2] * Position[2])) -- Set the robots accumulated distance moved to the
magnitude of the difference between vectors (previous and current positions)

 if (wanderingForwardDistanceSet == true) then -- If the robots wandering forward distance
has been set, do the following

 if (accumulatedForwardDistance >= (wanderingForwardDistance / 10)) then -- If the
robots accumualted distance travelled is equal to or larger than the generated distance to travel, do
the following

 wanderingForwardDistanceSet = false -- The robots wandering forward distance has
not been set (reset)

 robotIsRotating = true -- Set the robot to enter the 'rotating' phase
 end -- End of the conditional statement
 end -- End of the conditional statement

 end -- End of the conditional statement

 previousRobotPosition = currentRobotPosition -- Set the robots previous position to the
current position (end of frame)

 if (debugMode == true) then -- If debug mode is active, do the following
 if (allAreasExplored == true) then -- If robot has explored all of the areas in the
environment, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Moving Forward Distance Travelled [" ..
string.format("%.2f", accumulatedForwardDistance)
 .. "] Distance Travelling To [" .. (wanderingForwardDistance / 10) .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'moving forward' phase
 else -- If robot has not explored all of the areas in the environment, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Exploring [" .. exploringAreaOutput .. "] "
 .. "Distance Travelled [" .. string.format("%.2f", accumulatedForwardDistance)
 .. "] Distance Travelling To [" .. (wanderingForwardDistance / 10) .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'moving forward' phase
 end -- End of the conditional statement
 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, defaultVelocity) -- Set the robots left wheels
motor velocity to the defualt velocity
 sim.setJointTargetVelocity(rightWheelMotor, defaultVelocity) -- Set the robots right wheels
motor velocity to the default velocity

 else -- If the robot has entered the 'rotating' phase, do the following
 if (allAreasExplored == true) then -- If robot has explored all of the areas in the environment,
do the following
 if (robotRotationSet == false) then -- If the robots rotation direction has not been set, do
the following

 accumulatedRotationAngle = 0 -- Reset the robots accumulated angle rotated

 rotationDirection = math.random(1, 100) -- Generate a rotation direction for turning
(larger range presents more randomness)

 wanderingTurnAngle = math.random(30, 90) -- Generate an angle for the robot to rotate
towards

 if (rotationDirection % 2 == 0) then -- If the rotation direction is an even number (no
remainder), do the following
 robotTurningRight = true -- Set the robot to enter the 'turning right' phase
 else -- If the rotation direction is an odd number (has a remainder), do the following
 robotTurningLeft = true -- Set the robot to enter the 'turning left' phase
 end -- End of the conditional statement

 robotRotationSet = true -- Robots rotation direction has been set

 else -- If the robots rotation direction has been set, do the following
 robotRotation = currentRobotHeading - previousRobotHeading -- Set the robots rotation
to the difference between the robots current heading and the robots previous heading

 if (robotRotation < 0) then -- If the robots rotation is negative, do the following
 accumulatedRotationAngle = accumulatedRotationAngle + -(robotRotation) --
Accumulate the changes in rotation (made positive)
 else -- If the robots rotation is positive, do the following
 accumulatedRotationAngle = accumulatedRotationAngle + robotRotation --
Accumulate the changes in rotation
 end -- End of the conditional statement

 if (robotTurningLeft == true) then -- If the robot has entered the 'turning left' phase, do
the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Turning Left Angle Rotated [" .. string.format("%.2f",
accumulatedRotationAngle)
 .. "] Angle Rotating To [" .. wanderingTurnAngle .. "] "

 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning left' phase
 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, defaultVelocity / 2) -- Set the robots left
wheels motor velocity to '2' times less than the default velocity
 sim.setJointTargetVelocity(rightWheelMotor, defaultVelocity * 1.5) -- Set the robots
right wheels motor velocity to '1.5' times more than the default velocity

 if (accumulatedRotationAngle >= wanderingTurnAngle) then -- If the robots
accumualted angle rotated is equal to or larger than the generated angle, do the following
 robotIsRotating = false -- Set the robot to exit the 'rotating' phase
 end -- End of the conditional statement

 elseif (robotTurningRight == true) then -- if the robot is entering the 'turning right' phase,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Turning Right Angle Rotated [" .. string.format("%.2f",
accumulatedRotationAngle)
 .. "] Angle Rotating To [" .. wanderingTurnAngle .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning right' phase
 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, defaultVelocity * 1.5) -- Set the robots left
wheels motor velocity to '1.5' times more than the default velocity
 sim.setJointTargetVelocity(rightWheelMotor, defaultVelocity / 2) -- Set the robots right
wheels motor velocity to '2' times less than the default velocity

 if (accumulatedRotationAngle >= wanderingTurnAngle) then -- If the robots
accumualted angle rotated is equal to or larger than the generated angle, do the following
 robotIsRotating = false -- Set the robot to exit the 'rotating' phase
 end -- End of the conditional statement
 end -- End of the conditional statement

 end -- End of the conditional statement
 else -- If robot has not explored all of the areas in the environment, do the following
 if (robotRotationSet == false) then -- If the robots rotation direction has not been set, do
the following

 if (robotExploredAreaSelected == true) then -- If the robot has explored the target area
assigned, do the following
 robotAreaToExploreSelected = false -- An unexplored area has not been assigned to the
robot to explore

 robotExploringArea = math.random(1, 9) -- Generate a number, representing the area
for the robot to explore

 while (robotAreaToExploreSelected == false) do -- While an area has not been assigned
to the robot to explore, do the following
 if (robotExploredArea[robotExploringArea] == true) then -- If the robot has explored
the randomly selected area, do the following
 robotExploringArea = math.random(1, 9) -- Select another area for the robot to
explore
 else -- If the area randomly selected has not been explored, do the following
 robotAreaToExploreSelected = true -- An unexplored area has been assigned to the
robot to explore
 end -- End of the conditional statement
 end -- End of the conditional statement

 for i = 1, 9, 1 do -- For all of the target areas specified, do the following
 if (i ~= robotExploringArea) then -- If the currently iterated area is not the area that
the robot is set to explore, do the following
 robotAreaExploring[i] = false -- The robot will not explore any other area
 else -- if the currently iterated area is the area that the robot is closest to, do the
following
 robotAreaExploring[i] = true -- The robots has been assigned an area to explore
 end -- End of the conditional statement
 end -- End of the iterative statement

 if (robotExploringArea == 1) then -- If the robot has been set to explore the 'top-left'
region of the environment, do the following
 exploringAreaOutput = "Top-left" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 2) then -- If the robot has been set to explore the 'top-
middle' region of the environment, do the following
 exploringAreaOutput = "Top-middle" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 3) then -- If the robot has been set to explore the 'top-
right' region of the environment, do the following
 exploringAreaOutput = "Top-right" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 4) then -- If the robot has been set to explore the 'middle-
left' region of the environment, do the following
 exploringAreaOutput = "Middle-left" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 5) then -- If the robot has been set to explore the 'centre'
region of the environment, do the following
 exploringAreaOutput = "Centre" -- Set the area explored output to the area the robot
is exploring
 elseif (robotExploringArea == 6) then -- If the robot has been set to explore the 'middle-
right' region of the environment, do the following
 exploringAreaOutput = "Middle-right" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 7) then -- If the robot has been set to explore the
'bottom-left' region of the environment, do the following

 exploringAreaOutput = "Bottom-left" -- Set the area explored output to the area the
robot is exploring
 elseif (robotExploringArea == 8) then -- If the robot has been set to explore the
'bottom-middle' region of the environment, do the following
 exploringAreaOutput = "Bottom-middle" -- Set the area explored output to the area
the robot is exploring
 elseif (robotExploringArea == 9) then -- If the robot has been set to explore the
'bottom-right' region of the environment, do the following
 exploringAreaOutput = "Bottom-right" -- Set the area explored output to the area
the robot is exploring
 end -- End of the conditional statement

 end -- End of the conditional statement

 robotTargetExploreAngle = math.deg(math.atan2(targetPositions[robotExploringArea][2]
- robotPosition[2],
 targetPositions[robotExploringArea][1] - robotPosition[1])) --
Calculate the angular difference between the robots current position and target position (excluding
robot heading)

 if (robotTargetExploreAngle < 0) then -- If the angular difference between the robots
position (aswell as facing direction) and the target position is smaller than '0' degrees (negative), do
the following
 robotTargetExploreAngle = robotTargetExploreAngle + 360 -- Set the angular difference
to be positive (relatively)
 end -- End of the conditional statement

 robotExploredAreaSelected = false -- The robot has not explored the area that it is
currently assigned to

 if (robotCurrentHeading0to360 < robotTargetExploreAngle) then -- If the robots current
heading (translated) is smaller than the angle it will rotate to, do the following
 if (robotTargetExploreAngle - robotCurrentHeading0to360 <
 360 + (robotCurrentHeading0to360 - robotTargetExploreAngle)) then -- If the
difference between the angle to rotate to and the robots heading is smaller than its opposite
calculation, made positive (relatively), do the following

 robotDifferenceBetweenAngles = robotTargetExploreAngle -
robotCurrentHeading0to360 -- Store the difference between the angles

 if (robotDifferenceBetweenAngles < 0) then -- If the difference between the angles is
smaller than '0' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles + 360 -- Add
'360' degrees to the difference
 end -- End of the conditional statement

 if (robotDifferenceBetweenAngles > 360) then -- If the difference between the angles
is larger than '360' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles - 360 -- Subtract
'360' degrees to the difference
 end -- End of the conditional statement

 robotTurningLeft = true -- Set the robot to turn left
 else -- If the difference between the angle to rotate to and the robots heading is larger
than its opposite calculation, made positive (relatively), do the following
 robotDifferenceBetweenAngles = 360 + (robotCurrentHeading0to360 -
robotTargetExploreAngle) -- Store the difference between the angles, made positive (relatively)

 if (robotDifferenceBetweenAngles < 0) then -- If the difference between the angles is
smaller than '0' degrees, do the following (not required but implemented in case of error)
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles + 360 -- Add
'360' degrees to the difference
 end -- End of the conditional statement

 if (robotDifferenceBetweenAngles > 360) then -- If the difference between the angles
is larger than '360' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles - 360 -- Subtract
'360' degrees to the difference
 end -- End of the conditional statement

 robotTurningRight = true -- Set the robot to turn right
 end -- End of the conditional statement
 elseif (robotCurrentHeading0to360 > robotTargetExploreAngle) then -- If the robots
current heading (translated) is larger than the angle it will rotate to, do the following
 if (360 + (robotTargetExploreAngle - robotCurrentHeading0to360) <
 robotCurrentHeading0to360 - robotTargetExploreAngle) then -- If the difference
between the angle to rotate to and the robots heading made positive (relatively) is smaller than its
opposite calculation, do the following

 robotDifferenceBetweenAngles = 360 + (robotTargetExploreAngle -
robotCurrentHeading0to360) -- Store the difference between the angles, made positive (relatively)

 if (robotDifferenceBetweenAngles < 0) then -- If the difference between the angles is
smaller than '0' degrees, do the following (not required but implemented in case of error)
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles + 360 -- Add
'360' degrees to the difference
 end -- End of the conditional statement

 if (robotDifferenceBetweenAngles > 360) then -- If the difference between the angles
is larger than '360' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles - 360 -- Subtract
'360' degrees to the difference
 end -- End of the conditional statement

 robotTurningLeft = true -- Set the robot to turn left
 else -- If the difference between the angle to rotate to and the robots heading made
positive (relatively) is larger than its opposite calculation, do the following
 robotDifferenceBetweenAngles = robotCurrentHeading0to360 -
robotTargetExploreAngle -- Store the difference between the angles

 if (robotDifferenceBetweenAngles < 0) then -- If the difference between the angles is
smaller than '0' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles + 360 -- Add
'360' degrees to the difference
 end -- End of the conditional statement

 if (robotDifferenceBetweenAngles > 360) then -- If the difference between the angles
is larger than '360' degrees, do the following
 robotDifferenceBetweenAngles = robotDifferenceBetweenAngles - 360 -- Subtract
'360' degrees to the difference
 end -- End of the conditional statement

 robotTurningRight = true -- Set the robot to turn right
 end -- End of the conditional statement
 end -- End of the conditional statement

 robotRotatedToTarget = 0 -- Reset the robots rotation accumulated since the last frame
was made

 rotateAccumulatedRotatedToTarget = 0 -- Reset the robots rotation accumulated
towards the current area target

 robotRotationSet = true -- Robots rotation direction has been set

 else -- If the robots rotation direction has been set, do the following

 robotRotatedToTarget = currentRobotHeading - previousRobotHeading -- Store the
robots accumulated rotation since the last frame was made

 if (robotRotatedToTarget < 0) then -- If the robot has rotated negatively, do the following
 rotateAccumulatedRotatedToTarget = rotateAccumulatedRotatedToTarget + -
(robotRotatedToTarget) -- Accumulate the robots rotation towards to the area target (negated)
 else -- If the robot has rotated positively, do the following
 rotateAccumulatedRotatedToTarget = rotateAccumulatedRotatedToTarget +
robotRotatedToTarget -- Accumulate the robots rotation towards to the area target
 end -- End of the conditional statement

 if (robotTurningLeft == true) then -- If the robot has entered the 'turning left' phase, do
the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Exploring [" .. exploringAreaOutput .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget)
 .. "] Angle Rotating To [" .. string.format("%.2f", robotDifferenceBetweenAngles)
.. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning left' phase

 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, defaultVelocity / 2) -- Set the robots left
wheels motor velocity to '2' times less than the default velocity
 sim.setJointTargetVelocity(rightWheelMotor, defaultVelocity * 1.5) -- Set the robots
right wheels motor velocity to '1.5' times more than the default velocity

 if (rotateAccumulatedRotatedToTarget >= robotDifferenceBetweenAngles) then -- If
the robots accumualted angle rotated is equal to or larger than the angular difference between the
robot and target area, do the following
 robotIsRotating = false -- Set the robot to exit the 'rotating' phase
 end -- End of the conditional statement

 elseif (robotTurningRight == true) then -- if the robot is entering the 'turning right' phase,
do the following
 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Wandering] -----> Exploring [" .. exploringAreaOutput .. "] "
 .. "Angle Rotated [" .. string.format("%.2f", rotateAccumulatedRotatedToTarget)
 .. "] Angle Rotating To [" .. string.format("%.2f", robotDifferenceBetweenAngles)
.. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning right' phase
 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, defaultVelocity * 1.5) -- Set the robots left
wheels motor velocity to '1.5' times more than the default velocity
 sim.setJointTargetVelocity(rightWheelMotor, defaultVelocity / 2) -- Set the robots right
wheels motor velocity to '2' times less than the default velocity

 if (rotateAccumulatedRotatedToTarget >= robotDifferenceBetweenAngles) then -- If
the robots accumualted angle rotated is equal to or larger than the angular difference between the
robot and target area, do the following
 robotIsRotating = false -- Set the robot to exit the 'rotating' phase
 end -- End of the conditional statement
 end -- End of the conditional statement

 end -- End of the conditional statement

 end -- End of the conditional statement

 previousRobotHeading = currentRobotHeading -- Set the robots previous heading to the
current heading (end of frame)

 end -- End of the conditional statement
 end

end -- End of the function declaration

function robotEdgeFollowing() -- Robot edge following strategy

 robotWanderingReset = true -- The robots 'wandering' phase configuration requires to be reset
(was interrupted)

 if (edgeFollowingLeftDetected == true) then -- If the robot has been set to follow an edge of an
object on its left side, do the following

 leftSensorResult, leftSensorDistance = sim.readProximitySensor(sonarSensors[1]) -- Store object
detection and object distance (left-most sensor)
 frontLeftSensorResult, frontLeftSensorDistance = sim.readProximitySensor(sonarSensors[3]) --
Store object detection and object distance (front sensor)

 if (frontLeftSensorResult > 0) and (frontLeftSensorDistance <= noDetectionDistance) then -- If an
object was detected and the detected distance was within the robots no detection distance, do the
following

 robotIsEdgeFollowing = false -- Set the robot to exit the 'edge following' phase

 else -- Else if an object was not detected or within the given distance to the front of the robot,
do the following

 if (leftSensorResult > 0) and (leftSensorDistance ~= setPoint) then -- If an object was detected
and the detcted distance is not equal to the setpoint, do the following
 if (leftSensorResult < 0) then -- If there was an error with the left-most sensor detecting, do
the following
 leftSensorDistance = maxDistance -- Set the detected distance to the maximum distance
 end -- End of the conditional statement

 leftError = setPoint - leftSensorDistance -- Set the left error to the difference between the
set point and the detected distance of the robots left-most sensor

 leftErrorSum[leftErrorCounter] = leftError -- Store the error into the array, indexed at the
current error count

 leftCurrentError = leftError -- Set the current left error to the current error detected

 leftErrorCounter = leftErrorCounter + 1 -- Increment the error counter

 if (leftErrorCounter > integralThreshold) then -- If the error counter is greater than the
integral threshold, do the following
 leftErrorCounter = 1 -- Reset the error counter
 end -- End of the conditional statement

 if (leftErrorCounter == 1) then -- If the left error counter is equal to '1', do the following

 leftLastError = leftErrorSum[table.getn(leftErrorSum)] -- Set the last left error to the last
element in the array, relative to the size of the array
 else -- If the left error counter is not equal to '1', do the following
 leftLastError = leftErrorSum[leftErrorCounter - 1] -- Set the last left error to the previously
set element in the array
 end -- End of the conditional statement

 if (leftError > 0) then -- If the left error is larger than '0' (too close to the object), do the
following

 accumulatedLeftError = 0 -- Reset the accumulated error sum

 for i = 1, table.getn(leftErrorSum), 1 do -- For the size of the left error sum array, do the
following
 accumulatedLeftError = accumulatedLeftError + leftErrorSum[i] -- Add and equal the
currently iterated error to the accumulated error sum
 end -- End of the iterative statement

 if (table.getn(leftErrorSum) == integralThreshold) then -- If the size of the left error sum
array is equal to the integral threshold, do the following

 accumulatedLeftRMSE = 0 -- Reset the accumulated left RMSE value

 for i = 1, integralThreshold, 1 do -- For the value of integral threshold, do the following
 accumulatedLeftRMSE = accumulatedLeftRMSE + ((leftErrorSum[i])^2) -- Add and
equal the currently iterated error, squared, to the accumulated left RMSE value
 end -- End of the iterative statement

 RMSE = math.sqrt(accumulatedLeftRMSE / integralThreshold) -- Set the RMSE value to
the square root of the accumulated RMSE divided by the integral threshold

 end -- End of the conditional statement

 -- Set the robots left wheels motor velocity to the default velocity whilst adding the
proportional, integral and derivative gains (PID)
 leftWheelVelocity = defaultVelocity +
 (proportionalGain * leftError) + -- Proportional gain
 (integralGain * (accumulatedLeftError / integralThreshold)) + -- Integral gain
 (derivativeGain * (leftLastError - leftCurrentError)) -- Derivative gain

 rightWheelVelocity = defaultVelocity -- Set the robots right wheels motor velocity to the
default velocity

 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Edge Following] Left -----> Turning Outwards [RMSE " ..
string.format("%.5f", RMSE) .. "] "

 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning outwards' phase
 end -- End of the conditional statement

 else -- If the left error is smaller than '0' (too far from the object), do the following

 accumulatedLeftError = 0 -- Reset the accumulated error sum

 for i = 1, table.getn(leftErrorSum), 1 do -- For the size of the left error sum array, do the
following
 accumulatedLeftError = accumulatedLeftError + leftErrorSum[i] -- Add and equal the
currently iterated error to the accumulated error sum
 end -- End of the iterative statement

 if (table.getn(leftErrorSum) == integralThreshold) then -- If the size of the left error sum
array is equal to the integral threshold, do the following

 accumulatedLeftRMSE = 0 -- Reset the accumulated left RMSE value

 for i = 1, integralThreshold, 1 do -- For the value of integral threshold, do the following
 accumulatedLeftRMSE = accumulatedLeftRMSE + ((leftErrorSum[i])^2) -- Add and
equal the currently iterated error, squared, to the accumulated left RMSE value
 end -- End of the iterative statement

 RMSE = math.sqrt(accumulatedLeftRMSE / integralThreshold) -- Set the RMSE value to
the square root of the accumulated RMSE divided by the integral threshold

 end -- End of the conditional statement

 -- Set the robots left wheels motor velocity to the default velocity whilst adding the
proportional, integral and derivative gains (PID)
 leftWheelVelocity = defaultVelocity +
 (proportionalGain * leftError) + -- Proportional gain
 (integralGain * (accumulatedLeftError / integralThreshold)) + -- Integral gain
 (derivativeGain * (leftLastError - leftCurrentError)) -- Derivative gain

 rightWheelVelocity = defaultVelocity -- Set the robots right wheels motor velocity to the
default velocity

 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Edge Following] Left -----> Turning Inwards [RMSE " .. string.format("%.5f",
RMSE) .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning inwards' phase
 end -- End of the conditional statement

 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the velocity value of
the robots 'left' motor component
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the velocity value
of the robots 'right' motor component
 end
 end
 elseif (edgeFollowingRightDetected == true) then -- If the robot has been set to follow an edge of
an object on its right side, do the following

 rightSensorResult, rightSensorDistance = sim.readProximitySensor(sonarSensors[8]) -- Store
object detection and object distance (left-most sensor)
 frontRightSensorResult, frontRightSensorDistance = sim.readProximitySensor(sonarSensors[6]) -
- Store object detection and object distance (front sensor)

 if (frontRightSensorResult > 0) and (frontRightSensorDistance <= noDetectionDistance) then -- If
an object was detected and the detected distance was within the robots no detection distance, do
the following

 robotIsEdgeFollowing = false -- Set the robot to exit the 'edge following' phase

 else -- Else if an object was not detected or within the given distance to the front of the robot,
do the following

 if (rightSensorResult > 0) and (rightSensorDistance ~= setPoint) then -- If an object was
detected and the detcted distance is not equal to the setpoint, do the following
 if (rightSensorResult < 0) then -- If there was an error with the left-most sensor detecting,
do the following
 rightSensorDistance = maxDistance -- Set the detected distance to the maximum distance
 end -- End of the conditional statement

 rightError = setPoint - rightSensorDistance -- Set the right error to the difference between
the set point and the detected distance of the robots right-most sensor

 rightErrorSum[rightErrorCounter] = rightError -- Set the error into the array, relative to the
current error count

 rightCurrentError = rightError -- Set the current right error to the current error detected

 rightErrorCounter = rightErrorCounter + 1 -- Increment the error counter

 if (rightErrorCounter > integralThreshold) then -- If the error counter is greater than the
integral threshold, do the following
 rightErrorCounter = 1 -- Reset the error counter
 end -- End of the conditional statement

 if (rightErrorCounter == 1) then -- If the right error counter is equal to '1', do the following
 rightLastError = rightErrorSum[table.getn(rightErrorSum)] -- Set the last right error to the
last element in the array, relative to the size of the array
 else -- If the right error counter is not equal to '1', do the following

 rightLastError = rightErrorSum[rightErrorCounter - 1] -- Set the last right error to the
previously set element in the array
 end -- End of the conditional statement

 if (rightError > 0) then -- If the right error is larger than '0' (too close to the object), do the
following

 accumulatedRightError = 0 -- Reset the accumulated error sum

 for i = 1, table.getn(rightErrorSum), 1 do -- For the size of the right error sum array, do
the following
 accumulatedRightError = accumulatedRightError + rightErrorSum[i] -- Add and equal
the currently iterated error to the accumulated error sum
 end -- End of the iterative statement

 if (table.getn(rightErrorSum) == integralThreshold) then -- If the size of the right error
sum array is equal to the integral threshold, do the following

 accumulatedRightRMSE = 0 -- Reset the accumulated right RMSE value

 for i = 1, integralThreshold, 1 do -- For the value of integral threshold, do the following
 accumulatedRightRMSE = accumulatedRightRMSE + ((rightErrorSum[i])^2) -- Add and
equal the currently iterated error, squared, to the accumulated right RMSE value
 end -- End of the iterative statement

 RMSE = math.sqrt(accumulatedRightRMSE / integralThreshold) -- Set the RMSE value
to the square root of the accumulated RMSE divided by the integral threshold

 end -- End of the conditional statement

 -- Set the robots right wheels motor velocity to the default velocity whilst adding the
proportional, integral and derivative gains (PID)
 rightWheelVelocity = defaultVelocity +
 (proportionalGain * rightError) + -- Proportional gain
 (integralGain * (accumulatedRightError / integralThreshold)) + -- Integral gain
 (derivativeGain * (rightLastError - rightCurrentError)) -- Derivative gain

 leftWheelVelocity = defaultVelocity -- Set the robots left wheels motor velocity to the
default velocity

 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Edge Following] Right -----> Turning Outwards [RMSE " ..
string.format("%.5f", RMSE) .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning outwards' phase
 end -- End of the conditional statement

 else -- If the right error is smaller than '0' (too far from the object), do the following

 accumulatedRightError = 0 -- Reset the accumulated error sum

 for i = 1, table.getn(rightErrorSum), 1 do -- For the size of the right error sum array, do
the following
 accumulatedRightError = accumulatedRightError + rightErrorSum[i] -- Add and equal
the currently iterated error to the accumulated error sum
 end -- End of the iterative statement

 if (table.getn(rightErrorSum) == integralThreshold) then -- If the size of the right error
sum array is equal to the integral threshold, do the following

 accumulatedRightRMSE = 0 -- Reset the accumulated right RMSE value

 for i = 1, integralThreshold, 1 do -- For the value of integral threshold, do the following
 accumulatedRightRMSE = accumulatedRightRMSE + ((rightErrorSum[i])^2) -- Add and
equal the currently iterated error, squared, to the accumulated right RMSE value
 end -- End of the iterative statement

 RMSE = math.sqrt(accumulatedRightRMSE / integralThreshold) -- Set the RMSE value
to the square root of the accumulated RMSE divided by the integral threshold

 end -- End of the conditional statement

 -- Set the robots right wheels motor velocity to the default velocity whilst adding the
proportional, integral and derivative gains (PID)
 rightWheelVelocity = defaultVelocity +
 (proportionalGain * rightError) + -- Proportional gain
 (integralGain * (accumulatedRightError / integralThreshold)) + -- Integral gain
 (derivativeGain * (rightLastError - rightCurrentError)) -- Derivative gain

 leftWheelVelocity = defaultVelocity -- Set the robots left wheels motor velocity to the
default velocity

 if (debugMode == true) then -- If debug mode is active, do the following
 printf("Speed [" .. string.format("%.2f", robotSpeed) .. " m/s] Heading [" ..
string.format("%.2f", robotHeading) .. " DEG] "
 .. "Position [" .. string.format("%.2f", robotPosition[1]) .. ", " .. string.format("%.2f",
robotPosition[2]) .. "] "
 .. "Detection Left [" .. leftString .. "] " .. "Detection Right [" .. rightString .. "] "
 .. "State [Edge Following] Right -----> Turning Inwards [RMSE " ..
string.format("%.5f", RMSE) .. "] "
 .. "RANSAC [" .. string.format("%.2f", ransacTargetCompletion) .. " PCT] of [" ..
ransacTarget .. "]") -- Output the robot entered the 'turning inwards' phase
 end -- End of the conditional statement

 end -- End of the conditional statement

 sim.setJointTargetVelocity(leftWheelMotor, leftWheelVelocity) -- Set the velocity value of
the robots 'left' motor component
 sim.setJointTargetVelocity(rightWheelMotor, rightWheelVelocity) -- Set the velocity value
of the robots 'right' motor component
 end -- End of the conditional statement
 end -- End of the conditional statement
 end -- End of the conditional statement

end -- End of the function declaration

function calculateMapping() -- Calculate the sonar readings in the 'X' and 'Y' dimensions, relative to
the robots position

 if (mainMap == true) then -- If the robot is currently in the primary environment, do the following

 graphPositionX = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the plot
position coordinate in the 'X' dimension, for each sensor
 graphPositionY = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the plot
position coordinate in the 'Y' dimension, for every sensor

 scenePositionX = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the scene
position coordinate in the 'X' dimension, for every sensor
 scenePositionY = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the scene
position coordinate in the 'Y' dimension, for every sensor

 mapSpacePositionX = 0 -- Reset the graph plot position in the 'X' axis, relative to the maps space
 mapSpacePositionY = 0 -- Reset the graph plot position in the 'Y' axis, relative to the maps space

 pioneerPosition = sim.getObjectPosition(pioneerObject, -1) -- Store the robots current position

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 if (sonarReadings[i] ~= -1) then -- If the currently iterated sonar reading has a detected
distance value, do the following

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 sonarSensorPositions[i] = sim.getObjectPosition(sonarSensors[i], -1) -- Store the position
of the currently iterated sonar sensor
 end -- End of the iterative statement

 distanceFromRobot = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the
difference in distance between the robots positions and its sensors
 difference = { 0, 0 } -- Create and initialise an array for storing the difference between the
robots sonar sensor positions and the robots position

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 difference[1] = sonarSensorPositions[i][1] - pioneerPosition[1] -- Set the 'X' value of the
position to be the difference between the robots position and sensor position in the 'X' axis

 difference[2] = sonarSensorPositions[i][2] - pioneerPosition[2] -- Set the 'Y' value of the
position to be the difference between the robots position and sensor position in the 'Y' axis

 distanceFromRobot[i] = math.sqrt((difference[1]^2) + (difference[2]^2)) + 0.05 -- Set the
distance to the magnitude of the position difference added with extra distance
 end -- End of the iterative statement

 sonarPositionX = math.cos(math.rad(sonarAngles[i])) * (sonarReadings[i] +
distanceFromRobot[i]) -- Calculate the detected objects 'X' coordinate relative to the robots current
position (robots radius is '0.5m')
 sonarPositionY = math.sin(math.rad(sonarAngles[i])) * (sonarReadings[i] +
distanceFromRobot[i]) -- Calculate the detected objects 'Y' coordinate relative to the robots current
position (robots radius is '0.5m')

 pioneerRotation = sim.getObjectOrientation(pioneerObject, -1) -- Store the robots current
orientation
 pioneerRotation = pioneerRotation[3] -- Set the variable to be the front facing sensor only
(heading)

 rotationX = sonarPositionX * math.cos(pioneerRotation) + sonarPositionY * -
(math.sin(pioneerRotation)) -- Rotate the 'X' coordinate to CoppeliaSim's global coordinate system
 rotationY = sonarPositionX * math.sin(pioneerRotation) + sonarPositionY *
(math.cos(pioneerRotation)) -- Rotate the 'Y' coordinate to CoppeliaSim's global coordinate system

 drawingPointX = rotationX + pioneerPosition[1] -- Translate the drawing point by the robots
'X' position coordinate
 drawingPointY = rotationY + pioneerPosition[2] -- Translate the drawing point by the robots
'Y' position coordinate

 sensorReadingToDrawPoint[i][1] = drawingPointX -- Set the 'X' value of the sonar sensors
position, used to determine if a point is drawn to the calculated 'X' position value
 sensorReadingToDrawPoint[i][2] = drawingPointY -- Set the 'Y' value of the sonar sensors
position, used to determine if a point is drawn to the calculated 'Y' position value

 graphPointX = round(rotationX + pioneerPosition[1], graphPointRoundDecimalPlaces) --
Translate the drawing point by the robots 'X' position coordinate
 graphPointY = round(rotationY + pioneerPosition[2], graphPointRoundDecimalPlaces) --
Translate the drawing point by the robots 'Y' position coordinate

 sensorReadingToDrawGraph[i][1] = graphPointX -- Set the 'X' value of the sonar sensors
position, used to determine if a point is drawn to the calculated 'X' position value
 sensorReadingToDrawGraph[i][2] = graphPointY -- Set the 'Y' value of the sonar sensors
position, used to determine if a point is drawn to the calculated 'Y' position value
 end -- End of the conditional statement
 end -- End of the iterative statement [Remove for original]

 do -----[PLOT GRAPH POINTS]-----
 drawGraphX = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the robots front
facing sensor readings, in the 'X' dimension, used for plotting graph points
 drawGraphY = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the robots front
facing sensor readings, in the 'Y' dimension, used for plotting graph points

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 drawGraphX[i] = sensorReadingToDrawGraph[i][1] -- Store the 'X' value of the currently
iterated sensors reading, used to plot graph points
 drawGraphY[i] = sensorReadingToDrawGraph[i][2] -- Store the 'Y' value of the currently
iterated sensors reading, used to plot graph points
 end -- End of the iterative statement

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 for j = i + 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 if (drawGraphX[i] + drawGraphX[j] / 2 <= drawGraphX[i] + 0.05 or drawGraphX[i] +
drawGraphX[j] / 2 >= drawGraphX[i] - 0.05 and -- If the difference between the points is less than
'0.05', do the following
 drawGraphY[i] + drawGraphY[j] / 2 <= drawGraphX[i] + 0.05 or drawGraphY[i] +
drawGraphY[j] / 2 >= drawGraphX[i] - 0.05) then

 graphPositionX[i] = drawGraphX[i] -- Store the final position in the 'X' dimension for the
currently iterated sensor
 graphPositionY[i] = drawGraphY[i] -- Store the final position in the 'Y' dimension for the
currently iterated sensor
 end -- End of the conditional statement
 end -- End of the iterative statement
 end

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 if (graphPositionX[i] ~= 0 or graphPositionY[i] ~= 0) then -- If the graph position is not the
centre of the resizable floor (50, 50), do the following
 mapSpacePositionX = (graphPositionY[i] * 10) + 50 -- Store the 'X' value of the currently
iterated graph plots position (flipped), relative to the maps size and round amount used (becomes '1'
if value is '0.1')
 mapSpacePositionY = (graphPositionX[i] * 10) + 50 -- Store the 'Y' value of the currently
iterated graph plots position (flipped), relative to the maps size and round amount used (becomes '1'
if value is '0.1')

 --printf("X: " .. mapSpacePositionY .. " Y: " .. mapSpacePositionX .. " Count: " ..
offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY]) -- Output the
calculated position of the robot relative to the offline map space

 if (offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY] == 0) then
-- If the current position of a detected object has not already been detected, do the following
 sim.setGraphUserData(sim.getObjectHandle("MappingGraph"), "PositionX" .. i,
graphPositionX[i]) -- Set graph data (user defined), draw final 'X' coordinates for the currently
iterated sensor reading
 sim.setGraphUserData(sim.getObjectHandle("MappingGraph"), "PositionY" .. i,
graphPositionY[i]) -- Set graph data (user defined), draw final 'Y' coordinates for the currently
iterated sensor reading

 do -----[RANSAC]-----
 --for j = 1, 2, 1 do -- For the number of iterations (duplicate points for faster RANSAC
calculations), do the following

 if (allDetectedCoordinates ~= ransacTarget) then -- If the number of coorindates
detected is not equal to the target number of coordinates required for RANSAC, do the following
 allCoordinatesDetected[allCoordinatesCounter] = { } -- Create an array for storing
detected object positions

 allCoordinatesDetected[allCoordinatesCounter][1] = 0 -- Intialise the first element in
the array
 allCoordinatesDetected[allCoordinatesCounter][2] = 0 -- Initialise the second element
in the array

 allCoordinatesDetected[allCoordinatesCounter][1] = mapSpacePositionY -- Store the
translated detected coordinate value of an object in the 'X' axis
 allCoordinatesDetected[allCoordinatesCounter][2] = mapSpacePositionX -- Store the
translated detected coordinate value of an object in the 'Y' axis

 allCoordinatesCounter = allCoordinatesCounter + 1 -- Increment the number of
coordinates stored (used to index map coordinates array)
 allDetectedCoordinates = allDetectedCoordinates + 1 -- Increment the number of
coordinates stored
 end -- End of the conditional statement

 if (allDetectedCoordinates == ransacTarget) then -- If the number of coordinates
detected (subtracted by one due to starting '1' for array indexing) is equal to or more than the
RANSAC target, do the following
 printf("Ending Simulation [RANSAC TARGET MET] -----> Detected Positions [" ..
allDetectedCoordinates .. "] Target [" .. ransacTarget .. "]") -- Output simulation end
 sim.stopSimulation() -- Stop the simulation (RANSAC target was met)
 end -- End of the conditional statement
 --end -- End of the iterative statement
 end -----[RANSAC]-----

 offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY] =
offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY] + 1 -- Incremenet the
counter for the position that an object was detected at
 else -- If the current position of a detected object has already been detected, do the
following
 if (previousGraphPositionX[i] ~= mapSpacePositionX and previousGraphPositionY[i] ~=
mapSpacePositionY) then -- If the previously detected object positions is the same as the currently
detected object position (not detecting object any longer), do the following
 offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY] =
offlineMapCounters[mapWidth - mapSpacePositionX + 1][mapSpacePositionY] + 1 -- Incremenet the
counter for the position that an object was detected at

 do -----[RANSAC]-----
 --for k = 1, 2, 1 do -- For the number of iterations (duplicate points for faster RANSAC
calculations), do the following
 if (allDetectedCoordinates ~= ransacTarget) then -- If the number of coorindates
detected is not equal to the target number of coordinates required for RANSAC, do the following
 allCoordinatesDetected[allCoordinatesCounter] = { } -- Create an array for storing
detected object positions

 allCoordinatesDetected[allCoordinatesCounter][1] = 0 -- Intialise the first element
in the array
 allCoordinatesDetected[allCoordinatesCounter][2] = 0 -- Initialise the second
element in the array

 allCoordinatesDetected[allCoordinatesCounter][1] = mapSpacePositionY -- Store
the translated detected coordinate value of an object in the 'X' axis
 allCoordinatesDetected[allCoordinatesCounter][2] = mapSpacePositionX -- Store
the translated detected coordinate value of an object in the 'Y' axis

 allCoordinatesCounter = allCoordinatesCounter + 1 -- Increment the number of
coordinates stored (used to index map coordinates array)
 allDetectedCoordinates = allDetectedCoordinates + 1 -- Increment the number of
coordinates stored
 end -- End of the conditional statement

 if (allDetectedCoordinates == ransacTarget) then -- If the number of coordinates
detected (subtracted by one due to starting '1' for array indexing) is equal to or more than the
RANSAC target, do the following
 printf("Ending Simulation [RANSAC TARGET MET] -----> Detected Positions [" ..
allDetectedCoordinates .. "] Target [" .. ransacTarget .. "]") -- Output simulation end
 sim.stopSimulation() -- Stop the simulation (RANSAC target was met)
 end -- End of the conditional statement
 --end -- End of the iterative statement
 end -----[RANSAC]-----

 end -- End of the conditional statement

 end -- End of the conditional statement

 previousGraphPositionX[i] = mapSpacePositionX -- Store the graph plot position in the 'X'
axis, for the currently iterated sensor
 previousGraphPositionY[i] = mapSpacePositionY -- Store the graph plot position in the 'X'
axis, for the currently iterated sensor

 ransacTargetCompletion = (allDetectedCoordinates / ransacTarget) * 100 -- Calculate the
target number of coordinates used by RANSAC

 end -- End of the conditional statement
 end -- End of the iterative statement
 end -----[PLOT GRAPH POINTS]-----

 do -----[DRAW SCENE POINTS]-----
 scenePointX = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the robots front
facing sensor readings, in the 'X' dimension, used for drawing points in the scene
 scenePointY = { 0, 0, 0, 0, 0, 0, 0, 0 } -- Create and initialise an array for storing the robots front
facing sensor readings, in the 'Y' dimension, used for drawing points in the scene

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 scenePointX[i] = sensorReadingToDrawPoint[i][1] -- Store the 'X' value of the currently
iterated sensors reading, used to draw points in the scene

 scenePointY[i] = sensorReadingToDrawPoint[i][2] -- Store the 'Y' value of the currently
iterated sensors reading, used to draw points in the scene
 end -- End of the iterative statement

 for i = 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 for j = i + 1, 8, 1 do -- For all of the robots front facing sensors, do the following
 if (scenePointX[i] + scenePointX[j] / 2 <= scenePointX[i] + 0.05 or scenePointX[i] +
scenePointX[j] / 2 >= scenePointX[i] - 0.05 and -- If the difference between the points is less than
'0.05', do the following
 scenePointY[i] + scenePointY[j] / 2 <= scenePointX[i] + 0.05 or scenePointY[i] +
scenePointY[j] / 2 >= scenePointX[i] - 0.05) then

 scenePositionX[i] = scenePointX[i] -- Store the final position in the 'X' dimension for the
currently iterated sensor
 scenePositionY[i] = scenePointY[i] -- Store the final position in the 'Y' dimension for the
currently iterated sensor
 end -- End of the conditional statement
 end -- End of the iterative statement

 sim.addDrawingObjectItem(sceneDrawingPoints, { scenePositionX[i], scenePositionY[i], 0.81
}) -- Add a drawing point per function iteration

 end -- End of the iterative statement

 end -----[DRAW SCENE POINTS]-----

 do -----[DRAW ROBOT PATH POINTS]-----

 sim.setGraphUserData(sim.getObjectHandle("MappingGraph"), "RobotPositionX",
pioneerPosition[1]) -- Set graph data (user defined), draw final 'X' coordinates for the currently
iterated sensor reading
 sim.setGraphUserData(sim.getObjectHandle("MappingGraph"), "RobotPositionY",
pioneerPosition[2]) -- Set graph data (user defined), draw final 'Y' coordinates for the currently
iterated sensor reading

 end -----[DRAW ROBOT PATH POINTS]-----

 end -- End of the conditional statement
end -- End of the function declaration

function round(number, decimalPlaces) -- Round a given number to given decimal places

 local roundAmount = 10^(decimalPlaces or 0) -- Set the rounding amount (decimal places passed
or '0')

 number = number * roundAmount -- Multiply the passed number by the round amount calculated

 if (number >= 0) then -- If the passed number is larger than or equal to '0' (positive), do the
following

 number = math.floor(number + 0.5) -- Round the passed number up (add)
 else -- If the number is not positive, do the following
 number = math.ceil(number - 0.5) -- Round the passed number down (subtract)
 end -- End of the conditional statement

 return number / roundAmount -- Return the number divided by the amount amount
end -- End of the function declaration

