
Monte Carlo Localisation: Localising a Mobile
Robot Within a Known Environment

Adam Hubble
P17175774

Abstract – Mobile robot localisation is the problem

recognised as the determination of the position and orientation, or pose,
of a mobile robot within a given environment, from using sensory data
that the robot collects as observations of its subjected environment,
overtime. This paper explores the probabilistic localisation technique
renowned as Monte Carlo Localisation (MCL), to mitigate the abovesaid
localisation problem via pose estimation, for a wheeled mobile robot
that exists within a known environment.

Keywords – Mobile robot; Localisation; Position and
orientation; Pose; Sensory data; Observations; Probabilistic; Monte
Carlo Localisation; Pose estimation; Known environment

I. Introduction

In the proceeding passages, explores the operational
composition of the Monte Carlo Localisation (MCL) algorithm [1], as the
localisation technique instructed for overcoming the mobile robot
localisation problem [2], and for the application of a mobile robot
navigating within a known environment. As well, is the operational
overview and evaluation of the MCL techniques implementation, that has
been adapted to the purpose of the Pioneer P3-DX [3] model of mobile
robot, instructed for use.

Figure 1: Depiction of the Pioneer P3-DX mobile robot [3].

Notably, opposing the traditional application of the array of
Sound Navigation and Ranging (SONAR) sensors that the Pioneer P3-DX
model employs and operates with, and per the support of the Robot
Operating System (ROS) software platform [4][5], the robot alternatively
utilises an array of Laser Rangefinder (LR) sensors, that are preferred for
the degree of precision demanded for estimating the pose of the robot,
overtime. The preference for precision correlates with the information
obtained by ultrasonic sensors, which is known to be “noticeably
uncertain” [6], in consequence of ultrasonic sensor emissions undergoing
“multiple reflections or specular reflection away from the sensor, giving
false distance readings” [7].

Subsequently, the paper is assembled into five divisions of
focus, one of which focuses is this very introduction. Explored by the
proceeding sections, are discussions relevant to the operations of the
localisation technique appointed, the adapted implementation of the
technique said, as well as its performance evaluation in accordance with
the relevant test routines conducted and concluding observations that
concern the localisation techniques resultant capability, to address the
localisation problem announced.

II. Localisation Technique

Recognisably, there exists two fundamental challenges in
mobile robotics, relative to the accomplishment of accurate and efficient
sensor-based localisation, “global position estimation and local position
tracking” [8]; for which, a mobile robot “seeks to estimate its position in
a global coordinate frame” [1] of a given environment or space. Simply, a
mobile robot should be able to estimate and represent its “pose (location,
orientation) relative to its environment” [2]. Global position estimation
can be understood as the “ability to determine the robot’s position in a
priori or previously learned map” [8], based upon the robots’ sensory
observations of the subjected environment, and the displacements
measured in the robots odometry data, as it pursues navigation. Upon
initially localising the robot in the map, local tracking can then be

acknowledged as the “problem of keeping track of that position over
time”, which is vastly problematic and considered the “most-studied
problem” [1], as the global position estimation then “has to accommodate
small errors in its odometry as it moves” throughout the environment.
Given the nature of the work presented, the localisation problem
anticipates that the robot does not initially know its position nor
orientation in the environment provided, for which presents a “much
more difficult localisation problem, that of estimating its position from
scratch”; this is recognised as the global localisation problem, which is
problematic as the robots pose estimate “cannot be assumed to be small”
[2], initially. Moreover, even more problematic is the kidnapped robot
problem [9], which is defined as a condition, for when a “robot is instantly
moved to another position” in the corresponding environment, without
being detected and acknowledged by the procedure governing the global
position estimation of the robot. This problem is known to be typically
used to exercise a robot’s “ability to recover from catastrophic localisation
failures” [2], where unlike the global localisation problem, it is possible
that the robot “might firmly believe itself to be somewhere else at the
time of the kidnapping”. From knowing its position and orientation in the
global coordinate frame of a given environment or space, can the robot
“make use of existing maps, which allows it to plan and navigate reliably
in complex environments” [8], whilst also being “efficient”, when
accompanied by accurate local tracking.

In attempt to rectify the two underlying challenges posed by
mobile robot localisation, the work proposes the probabilistic, Monte
Carlo Localization (MCL) algorithm, that adopts the techniques of Monte
Carlo methods that were first “introduced in the seventies, and recently
rediscovered independently in the target-tracking” [1] domain of
computing. As recognised, MCL has the potential to “solve the global
localisation and kidnapped robot problem in a robust and efficient” [8]
manner and accommodate “arbitrary noise distributions”; although, the
regular MCL algorithm is known to be prone to the kidnapped robot
problem, given that there “might be no surviving samples nearby the
robot’s new pose after it has been kidnapped” to converge to.
Fundamentally, MCL purposes to represent the pose or belief of the robot
by “a set of samples” or particles, drawn from the “posterior distribution”
of robot poses (a cloud of particles); MCL represents the posteriors that
approximate the desired distribution (spread) via a “random collection of
weighted particles”, which simply estimate the state of the robot,
recursively, as a particle filter [10].

Figure 2: Visualisation of a kidnapped robot problem instance, where the
red-linear lines denote the sensory readings of the robot, to each of the

landmarks in the robot’s environment from the origin, represented by the
best particle [9].

Within the context of localisation, a particle filter as MCL

classifies to be, aims to “track a variable of interest as it evolves over time”
[10]. Particle filters employ a range of characteristics to achieve said
behaviour and as sample-based density approximation methods, overlook
previous works submitted to the field of mobile robot localisation, like
that of Kalman’s filter-based techniques and Markov’s topological and
grid-based approaches to localisation [8][1], that alternatively
approximate posteriors in parametric form. Some of the many
characteristics that render particle filters superior to the previous works
listed, are the following [8]:

❖ Particle filters can accommodate (almost) arbitrary sensor
characteristics, motion dynamics and noise distributions.

❖ Particle filters are recognised universal density
approximators, that feature less-restrictive formations of
posterior density when compared to parametric approaches.

❖ Particle filters allocate computational resources in areas of
the posterior density that are deemed most accurate,

through sampling in proportion to the posterior likelihood
(belief).

❖ Particle filters are capable in adapting to the quantity of
computational resources available for their execution by
managing the number of samples online.

❖ Particle filters are regarded as easy to implement, which
defines them as an attractive paradigm for addressing mobile
robot localisation.

However, particle filters also entertain many deficiencies for

the application of mobile robot localisation, which derive from the
stochastic nature of density approximation offered; some of said
deficiencies in focus of MCL, are exactly:

❖ If the sample set size is small, a well-localised robot may lose
track of its position due to MCL failing to generate a sample
in the corresponding location of the robot’s environment.

❖ If there are no samples nearby the robot’s new pose after
being kidnapped, the regular MCL algorithm is unable to
combat the kidnapped robot problem.

Beyond the scope of the work presented, exists an “adaptive

sampling scheme” [1], renowned as Adaptive Monte Carlo Localisation
(AMCL), that determines the number of samples drawn from the
distribution “on-the-fly” to represent the robots pose; this scheme
purposes to “trade-off” the computational expense of the algorithm’s
execution, for a depreciating accuracy of representation of the robots
estimated pose. Resultingly, MCL operates with a constant sample count
that is computational unnecessary overtime and consequentially costly,
whereas AMCL uses more “samples during global localisation when they
are most needed” and fewer when tracking the robot, as the position of
the robot becomes “approximately known”. Hence adaptive.

Particle Filter (Dieter Fox) Algorithm Pseudocode

1. Inputs: 𝑆𝑡−1 ← {〈𝑥𝑡−1
𝑖 , 𝑝𝑡−1

𝑖 〉 | 𝑖 = 1, 2, … , 𝑛}
2. 𝑆𝑡 ← ∅
3. 𝛼 ← ∅
4. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨
5. Sample index 𝑗 from discrete distribution given by
 weights in 𝑆𝑡−1
6. Sample 𝑥𝑡

𝑖 from 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1) conditioned on 𝑥𝑡−1
 and 𝑢𝑡−1

7. 𝑝𝑡
𝑖 ← 𝑝(𝑧𝑡 | 𝑥𝑡

𝑖)
8. 𝛼 ← 𝛼 + 𝑝𝑡

𝑖
9. 𝑆𝑡 ← 𝑆𝑡 ∪ {〈𝑥𝑡

𝑖 , 𝑝𝑡
𝑖〉}

10. 𝐞𝐧𝐝 𝐟𝐨𝐫
11. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨

12. 𝑝𝑡
𝑖 ←

𝑝𝑡
𝑖

𝛼

13. 𝐞𝐧𝐝 𝐟𝐨𝐫
14. Output 𝑆𝑡 sample set (posterior distribution)

A. Monte Carlo Localisation

MCL is in essence a recursive Bayes filter, which can be
utilised to estimate the “posterior distribution of robot poses conditioned
on sensor data” [2]; sensory data is surveyed by the robot throughout its
exploration routine in the environment that it is exposed to. Summarily,
Bayes’ filters address the problem of “estimating the state 𝑥 of a
dynamical system from sensor measurements”. Providing the nature of
the work presented, the dynamical system can be acknowledged as the
relation between the mobile robot and its environment, where the state
𝑥, characterises the “robot’s pose therein (often specified by a position in
a two-dimensional Cartesian space and the robot’s heading direction)”.
Fundamentally, Bayes’ filtering aims to estimate the state 𝑥, or a
probability density, “over the state space conditioned on the data”
concerning all previous observations and measurements of the robots
odometry and its environment, which is the posterior renowned as belief
(posterior belief), that can be given by a probability density function (PDF),
characterised as such:

𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡 | 𝑧𝑡, 𝑢𝑡)

Where 𝑥 denotes the state or pose of the robot, 𝑥𝑡 is the
state of the robot at time 𝑡, such that the states representation can be
characterised as 𝑥𝑡 = 〈𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡〉, given all past sensory perceptions about
the robot’s system (control measurements) 𝑢1:𝑡 = {𝑢1, 𝑢2, … , 𝑢𝑡} and all
sensory perceptions about the robot’s environment (observations) 𝑧1:𝑡 =
 {𝑧1, 𝑧2, … , 𝑧𝑡}; both of which measurements contain uncertainties. At
time 𝑡, the posterior PDF can also be characterised as:

𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡 | 𝑧𝑡, 𝑢𝑡−1, 𝑧𝑡−1, 𝑢𝑡−2, … , 𝑢0, 𝑧0)

Simply, the posterior distribution (belief) is represented by 𝑛
weighted, random samples or particles 𝑆 = {𝑆𝑖 | 𝑖 = 1, 2, … , 𝑛}, which as
mentioned and denoted above, are each comprised of a position 〈𝑥, 𝑦〉
and orientation (heading) 𝜃, with a discrete likelihood or probability
(belief) of 𝑝 ≥ 0; at time 𝑡, this is collectively denoted as 𝑆𝑡 =

{〈𝑥𝑡
𝑖, 𝑝𝑡

𝑖〉 | 𝑖 = 1, 2, … , 𝑛}, where 𝑥𝑡 once more represents the state or

pose of the robot at the given interval. Derived from the Markov world
assumption, Bayes’ filters assume that the “environment is Markov, that
is, past and future data are (conditionally) independent if one knows the
current state” of the robot 𝑥𝑡. When accounting for both Bayes rule and
the assumption said, posterior belief can then be characterised as:

𝐵𝑒𝑙(𝑥𝑡) = 𝛼𝑝(𝑧𝑡 | 𝑥𝑡) 𝐵𝑒𝑙̅̅ ̅̅ ̅(𝑥𝑡)

Where the term:

𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡) ← ∫ 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1) 𝐵𝑒𝑙(𝑥𝑡) 𝑑𝑥𝑡−1

represents the probabilistic model of system dynamics, or prediction, or
motion model alternatively, given that it “reflects the state transition due
to robot motion” [9]; this model considers the detected change in the
sensory perceptions of the robot’s system 𝑢𝑡, captured by its odometry
sensors (prediction phase). Whereas the term 𝑝(𝑧𝑡 | 𝑥𝑡) denotes the
probabilistic model of perceptions, or correction, or sensor model instead,
given that it “incorporates sensor readings to update the robots state” 𝑥,
which encompasses the calculation of the likelihood 𝑝 of the robot making
observation 𝑧𝑡 (correction phase). Meanwhile, 𝛼 denotes the
normalisation constant used to ensure that the integral of the posterior
belief is normalised to the value of one; it is necessary for the importance
factors to be normalised and sum to the value of one, so that they “define
a discrete probability distribution” [2]. In acknowledgement of the models
mentioned, the recursive state of Bayes’ filters can be componentised into
the following, identified phases:

Prediction – at each timestep 𝑡, a set of samples 𝑆𝑡 are drawn
from the “previously computed sample set” [1] 𝑆𝑡−1, relative to the
likelihood of each states “𝑝-value”, in response to the robot traversing
and its pose requiring to be reapproximated after the “motion command”
is executed. Here the probabilistic model of system dynamics is applied to
each state or particle comprising the posterior distribution 𝐵𝑒𝑙(𝑥𝑡) by
sampling from the density 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1) [8]; this is conditioned by the
robots control measurements 𝑢𝑡.

Figure 3: Visualisation of sample-based density approximation, for
compiling the posterior belief of a non-sensing robot, using motion model

(odometry sensor) measurements only [2].

Correction – at each timestep 𝑡, the robot’s sensory
observations of the environment 𝑧𝑡 are then factored, for re-weighting
each of the samples in the set 𝑆𝑡, relative to the probabilistic model of
perceptions 𝑝(𝑧𝑡 | 𝑥𝑡); this determines each particles likelihood of
accurately representing the current pose of the robot 𝑥𝑡, given the
evidence 𝑧𝑡 collected. Upon sample set 𝑆𝑡 being re-weighted, the
posterior distribution can then be corrected and converge, via resampling
from the set using a selection mechanism, that selects “higher probability
samples that have a high likelihood associated with them” [8]; this
formulates an updated set of samples 𝑆𝑡, that better (more densely)
approximates the pose of the robot at time 𝑡, relative to its environment.

Proceeding from the posterior distribution being updated,
both prediction and correction phases of MCL are repeated, recursively,
to address the local tracking problem of mobile robot localisation.
Preliminarily, the “initial belief characterises the initial knowledge about
the system state” [2] 𝑥, however, in the absence of said knowledge, the

posterior distribution (particle filter) is typically initialised by “a uniform
distribution over the state space”, given that the probability of the robot
existing in the environment with all possible poses is initially equivalent.

Monte Carlo Localisation (MCL) Algorithm Pseudocode

1. �̅�𝑡 ← ∅
2. 𝑥𝑡 ← ∅
3. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨
4. 𝑥𝑡

𝑖 ← 𝑚𝑜𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑢𝑡 , 𝑥𝑡−1
𝑖)

5. 𝑝𝑡
𝑖 ← 𝑠𝑒𝑛𝑠𝑜𝑟𝑀𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑧𝑡 , 𝑥𝑡

𝑖)
6. �̅�𝑡 ← �̅�𝑡 ∪ {〈𝑥𝑡

𝑖 , 𝑝𝑡
𝑖〉}

7. 𝐞𝐧𝐝 𝐟𝐨𝐫
8. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨
9. draw 𝑥𝑡

𝑖 from �̅�𝑡 with probability ∝ 𝑝𝑡
𝑖

10. 𝑥𝑡 ← 𝑥𝑡 + 𝑥𝑡
𝑖

11. 𝐞𝐧𝐝 𝐟𝐨𝐫
12. Output 𝑥𝑡 robot state (posterior distribution)

III. Software Implementation

Aligned with the functional operations of the MCL algorithm
explored, mobile robot localisation via MCL is achieved using three
distinct procedures; one of which methods purposes to instantiate and
initialise the particle filter, while another resamples and updates the
particle filter, recursively, and the remaining method estimates the pose
of the robot, via the posterior distribution populated, in cooperation with
data clustering techniques. In the proceeding passages, identifies the
implementation of the MCL algorithm proposed, in relation to the
targeted development platform, RoS [4].

A. RoS Terminal Instruction

For executing the software submitted, below, features the
ordered series of command-line instructions required to evaluate and
deploy the Pioneer P3-DX mobile robot, with localisation behaviours
native to the MCL algorithm implemented.

RoS Command-line Instruction Sequence

Command shell one:
Installing project dependencies (RoS Melodic)

$sudo apt install ros-$ROS_DISTRO-pr2-teleop ros-$ROS_DISTRO-joy
ros-$ROS_DISTRO-slam-gmapping ros-$ROS_DISTRO-map-server

Build the package
$cd catkin_ws/src/
$git clone https://github.com/justagist/socspioneer.git

Build the catkin workspace
$catkin_make

Command shell two:
Run a simulated environment and open a previously saved map

$cd catkin_ws/
$source devel/setup.bash
$roscore

Command shell three:
Run the RoS visualisation tool (RVIZ)

$rosrun rviz rviz
Open the graphical tools suite to load RVIZ and the map server

Command shell four:
Start the simulation with a robot, obstacle and provided world

$cd catkin_ws/src/socspioneer/data
$rosrun stage_ros stageros lgfloor.world

Key R can be used to toggle 2D and 3D perspectives of the world
Key D can be used to toggle the laser field-of-view visualisation

Command shell five:
Navigate the robot in the simulated environment

$roslaunch socspioneer keyboard_teleop.launch
Keys WASD translates the robot multi-directionally
Keys QE orientates the robot bidirectionally

Command shell six:
Load the map of the provided world from a map server

$cd catkin_ws/src/socspioneer/data
$rosrun map_server map_server lgfloor.yaml

Resultingly, a map series appears, originating from the map

server [11] and RVIZ sessions [12] instructed for execution.

Figure 4: Illustration of the RoS visualisation tool: RVIZ [12], displaying
occupancy map topic data that depicts the robot’s environment, upon

session initialisation.

Figure 5: Map server [11] visualisation, displaying the prebuilt
‘Igfloor.world’ environment, that features a red-indicated obstacle, blue-

indicated mobile robot, and black-indicated structural arrangement of
the world.

B. Particle Filter Initialisation

Extending the state of the software package provided to
facilitate the implementation of the MCL algorithm, and in focus of the
subclass: PFLocaliser, that extends its base class: PFLocaliserBase,
preliminarily, the parameters associated with an instance of the particle
filter required independent variable declarations, for operation.
Appropriately, this is addressed within the classes’ constructor method,
thus enabling all other methods contained within the class to share
equivalent access rights, which allows the values of the parameters to be
multipurposed and to remain consistent across multiple methods, instead
of their existing multiple declarations of the same variable(s). Therefore,
within the method bespoken, contains the declarations and initial
configurations of the variables constituting to the MCL algorithm. In which
features the noise coefficients of the robot’s motion model, that as
“compensation” [9] factors, aim to model uncertainty in the measure of
the robot’s motion overtime; accordingly, each of the parameter’s values
are initialised by “a uniform distribution over the state space” [2], as no
prior knowledge of the robot’s state would yet be known. Additionally,
there also exists variable declarations for particle resampling noise
coefficients, that are randomly derived from uniform distributions, to
offset the posterior distribution of the filter, in attempt to mitigate the
presence of the kidnapped robot problem [9] initially, and to account for
translational changes in the robot’s position, whilst the resampling
procedure executes overtime. Therein, also defines the active clustering
technique applied for estimating the robots pose, as well as the constant
count of online particles, representing the posterior distribution of the
filter, and the number of sensory readings that are considered and
compared with the predictions conditioned by the robots control
measurements 𝑢𝑡, when computing the particle weights in the
algorithm’s correction phase.

Figure 6: Code listing, visualising the '__init__()' method declaration,
located within the PFLocaliser subclass.

For instantiating an instance of the particle filter, there exists

a method, namely ‘intiialise_particle_cloud()’; per the title appointed, the
method functions to initialise the filters posterior distribution or the poses
of particles (samples) comprising a cloud-like formation, upon the starting
location of the robot in the corresponding environment being declared or
updated, or alternatively when another occupancy grid map instance is
instantiated. Operationally, the method conforms to instantiating a series
of particles that comprise the particle cloud via a ‘for-loop’, for the length
of the online particle count specified. Therein, each of the particles or
pose objects are normally sampled a position, that is affected (multiplied)
by the translational (𝑥 axis) and nautical (𝑦 axis) noise amounts sampled
by the initial, uniform distributions, as well as an orientation, too affected
by a uniform amount and sampled from a normal distribution but of an
angular displacement type alternatively. Where the affecting amounts
attempt to model the uncertainties presented by the robot’s motion-
tracking (odometry) capabilities and changes in the robot’s position whilst
the posterior distribution is being resampled, that the algorithm employs
for achieving a relatively accurate state representation. To model a
Gaussian-type distribution from the circular-orientation of angular
displacement, rotational noise is alternatively sampled from a von Mises
distribution [13], that is also “known as the circular normal distribution”,
on the interval [−𝜋, 𝜋]; this was more appropriate, given that it is the
circular analogue of normal distribution.

Figure 7: Code listing, visualising the 'initialise_particle_cloud()' method
declaration, located within the PFLocaliser subclass.

Noise parameters sample from larger uniform distributions

initially, to address the probabilistically equivalent potential of the robot
existing within the structural arrangement of the environment, with all
possible poses; thus, particles are vastly, uniformly spread and do not
form cluster-like densities. This presents MLC’s ability to represent
“multimodal probability distributions” [8], which as a “precondition for
localising a mobile robot from scratch”, better combats the likelihood of
the kidnapped robot problem, as the posterior distribution converges
overtime to achieve localisation; respectively, the noise amounts
downscale with convergence.

Figure 8: Visualisation of a particle cloud or global localisation
initialisation (left), transitioning to the convergence state of achieving

localisation of the mobile robot (right), overtime [1].

In correspondence with the values targeted for each
parameter’s configuration, elected as the initial upper and lower bounds
of each motion model noise parameter, the range [0.01, 0.3] was
provided, in which any value “within the given interval is equally like to be
drawn” [14] from. An insignificant range of values is justified, as motion
model noise is considered a scaling factor for the predicted positions and
orientations of the robot, which are assumed to be somewhat feasible
prior; this is supported by global position estimation only requiring to
accommodate for “small errors in its odometry as it moves” [1]
throughout the environment, given the maximum velocity permitted by
the robot’s mechanical composition [3]. Meanwhile, as the initial upper
and lower bounds of the particle resampling, positional noise parameter,
the range [75, 100] was configured, to disperse the particles considerably
far from the origin of the initial pose estimate, relative to the size of the
environment provided; as a “precondition for localising a mobile robot
from scratch” [8], a sizeable spread is believed to enhance the global
localisation of the robot, when the initial pose estimate is arbitrarily
selected in the environment. Whereas for the initial upper and lower
bounds of the particle resampling, rotational noise parameter, the range
[1, 120] was targeted, to consider all possible starting orientations of the
robot’s state, according to the empirical rule [15], which states that “for a
normal distribution, almost all observed data will fall within three
standard deviations of the mean or average”. Furthermore, as the sample
set size, representing the count of particles comprising the cloud or
posterior distribution, a constant value of two-hundred is provided, which
sensibly addresses the desired, initial, uniform dispersal of said particles
respective of the environments size, whilst being more computationally
efficient than other counts proposed [2][8][9]. As well, when computing
the particle weights in the algorithm’s correction phase, ninety sensory
readings are accounted for as the robots’ observations 𝑧𝑡, to enable the
comparison between the state predictions conditioned by the robots
control measurements 𝑢𝑡, to be better evaluated and therefore yield
more accountability than what a smaller amount could achieve; whilst
remaining computationally inexpensive to calculate.

C. Particle Filter Revision

Encapsulating the correction operations of the MCL
algorithm, exists an independent method, namely
‘update_particle_cloud()’; implied by its title, the method functions to
filter the particles comprising the posterior distribution recursively,
overtime, through a selective resampling procedure that refines the
distribution of the posterior belief gradually, to succumb to a convergence
state that more accurately represents the localised pose of the robot.
Given its recursive nature, accomplishes local position tracking that is
otherwise sought to be a problematic behaviour to attain for mobile robot
localisation [8]; as a functionally emulating call-back method, the
operations contained are only invocated upon the robot recording new
observations of its environment, that are published to the laser scan topic,
as scan data. Operationally, the method is comprised of two subsidiary
functional blocks, each of which are sensibly abstracted into independent
methods that can be invocated via function call statement; this
componentised-driven design “helps encapsulate” [16] the behaviours of
the algorithm, in favour of code base expansions and maintaining system
robustness. Summarily, the initial functional block of the two performs
the operations of a fitness (probability) proportionate selection algorithm,
namely roulette-wheel selection [17], which purposes to resample the
posterior distribution by formulating particles with new positions and
orientations, derived from the probabilities of selected particles
comprising its prior state. Meanwhile, the remaining functional block
applies resampling noise to each of the particles constituting to the
current-state cloud, to maintain a degree of dispersal that enables the
posterior distribution to update and track changes in the robot’s position,
mostly, whilst it is being resampled. Preceding each’s invocation, it is
salient to compute and accumulate each particles likelihood (weight) of
representing the state of the robot, accurately, relative to its perceptions
of the surrounding environment, given the unreliable and noisy nature of
odometer measurements [18]; fundamentally, the particle filter concerns
the robot’s observations relative to the perceptual model, to confirm the
pose estimated by the robot’s motion model. This subroutine is
orchestrated by a ‘for-loop’, used to iterate through each particle
representing the cloud, and targets the ‘get_weight()’ method defined in
the SensorModel class, to compute each passed particles importance
weight, relative to the latest laser scan data that is published to the
aforementioned topic.

Figure 9: Code listing, visualising the 'update_particle_cloud()' method
declaration, located within the PFLocaliser subclass.

Roulette-wheel selection – a stochastic selection mechanism,

where the “probability for selection of an individual is proportional to its
fitness” [17] or importance weight; the method is inspired by life-like
roulette-wheels but dissimilarly, each of the slots comprising the wheel
are weighted, such that the “larger the fitness of an individual is, the more
likely is its selection”. Therefore, it can be assumed that the important
weight of a particle is “proportional to its likelihood of selection”; given 𝑛
particles comprising the posterior distribution 𝐵𝑒𝑙(𝑥𝑡), the summation of
their probability weights ∑ 𝑝𝑖

𝑛
𝑖=1 as previously quoted, equates to the

value of one, when each is normalised to the interval [0, 1]. Thus, a
discrete distribution is formed; the algorithm targets higher-weighted
particles more often that lower-weighted particles to achieve denser
distributions and subsequently, more refined global estimates overtime,
per resampling cycle surpassed.

Figure 10: Graphical depiction of the roulette-wheel algorithm [19].

Modelled by a ‘for-loop’, initially a stop criterion is uniquely

defined for every particle that is resampled, as a uniformly randomised
percentile of the interval [0, 1] or the summation of all importance
weights; this is achieved via a pseudo-random number generator and
represents the sum of individual importance weights to be exceeded,
before a particle is selected. Upon particle selection, the corresponding
particle survives to the “next generation” [19], for which it is appended to
the current-state cloud representing the posterior belief of the robot. This
iterative procedure recurs until the particle cloud constitutes 𝑛 samples,
which in the case of the online particle count configured, is terminated
after two-hundred iterations.

Figure 11: Code listing, visualising the 'roulette_wheel_selection()'
method declaration, located within the PFLocaliser subclass.

Uncertainty modelling – to model displacements in the

robot’s position and orientation, that may have occurred since the
resampling procedure of the particle cloud was executed, motion model
and resampling noise, as translational, nautical, and rotational types, is
applied to each of the particle poses comprising the current-state cloud,
to maintain a degree of dispersion that allows the posterior distribution
to update and reflect deviations in the robot’s state, overtime.
Operationally, the method gradually decrements the values that were

originally configured for the motion model and particle resampling noise
parameters, for emulating a progressive state of convergence and
localisation of the robot, whilst jointly catering for potential incidences of
the kidnapped robot problem, initially. Upon predefined threshold
constants (arbitrarily appointed) being surpassed by the values of each of
the parameter’s concerned, as addressed by a series of ‘if-else’
statements, each parameters value is then resampled from its
corresponding uniform distribution, to retain insignificant volumes of
variance, that appropriate the state of the robot becoming
“approximately known” [1] and thus localised overtime. Beyond their
resampling, each resampling noise parameter is then reapplied as a
deviation factor, like within the initialise particle cloud method, for the
Gaussian distributions that are used to resample the positional and
rotational noise coefficients, representing the magnitude of potential
displacement from the robot’s current state. These samples are also
affected by the robot’s motion model noise parameters, to account for
potential odometrical miscalculations, involved in the displacement
forecast for the robot’s state. Once calculated, position-derived noise is
then appended to the position of the corresponding particle in the cloud,
whereas rotational-derived noise is separately injected, using the
‘rotateQuaternion()’ method located within the ‘util.py’ file, to affect the
orientation of the particle. Notably, the interval for each uniform
distribution of each noise parameter is arbitrarily settled, to sensibly
reflect the potency of noise derived from odometer calculations and
displacement in the robot’s state, in consideration of the robot’s peak
traversal capabilities [3].

Figure 12: Code listing, visualising the primary section of the
'particle_cloud_noise()' method declaration, located within the

PFLocaliser subclass.

Figure 13: Code listing, visualising the secondary section of the
'particle_cloud_noise()' method declaration, located within the

PFLocaliser subclass.

D. Robot Pose Estimation

In acquirement of a global estimate of the robot’s pose,
relative to the current-state particle cloud, exists a method, namely
‘estimate_pose()’; per the title specified, the method functions to provide
a position and orientation estimate of the robot, relative to the poses of
particles featured in the particle cloud or posterior distribution.
Operationally, the method achieves global estimation via an array of data
clustering techniques, that are used to sample particles conditioned by
their fitness and other existential properties, in attempt to represent the
robots state most-accurately; implemented as independent functional
blocks, each of the data clustering techniques contained within the
method only operate in singularity and not in parallel. This is addressed
by a series of ‘if-else’ statements, for which the active clustering
technique is conditioned by a string variable, representing the linguistic
label associated to one of the pose estimation techniques available.

Global mean – an averaging operation that establishes the
mean position and orientation of all particle poses comprising the particle
cloud. Iteratively, the technique accumulates the position and orientation
values of every particles pose in the current-state cloud, separately by
their 𝑥, 𝑦, 𝑧 and 𝑤 axes and with the support of a ‘for-loop’ declaration,
before each accumulation is then riven by the count of online particles
configured. Hence global mean 𝑥𝑡 = �̅�𝑡.

Figure 14: Code listing, visualising the 'estimate_pose()' method, global
mean averaging operation, located within the PFLocaliser subclass.

As the technique does not adhere to clustering explicitly,

given that their only exists one density of particles that the procedure
operates upon, the method is inadequate for rejecting outliers and
representing the state of the robot accurately. For which the technique
assumes the estimated pose sensitive to ambiguities, derived from the
structural symmetries of environments, which initiates particle cloud
partitioning that resultingly forms multiple, concentrated densities of
particles in distinctive locations in the bespoken environment. Providing
the mean operation of the procedure proposed, the robots state would
be falsely represented in a space central to all densities formed, where
presumably, few or no particles are present; this endorses the techniques
negligence in the submitted state of the MCL algorithm.

Figure 15: Visualisation of a particle cloud partitioned into separate,
distinguished densities of particles, resulting from the structural

symmetry of the environment exhibited [1].

Best particle – an importance weight filtering operation that
establishes the particle appearing to represent the pose of the robot
most-accurately, relative to all particle’s important weights. In which the
particle facilitating the highest belief factor is elected to model the
estimated pose of the robot, as the ‘best’ or fittest candidate for state
representation. Similarly, the technique iterates through each particle in
the current-state cloud, via ‘for-loop’, to then be able to access each
samples importance weight using the ‘get_weight()’ method previously
applicated, which is required for the comparative nature of determining
whether the current particles importance is greater than any of the
particles iterated prior. Said comparison is sensibly addressed by an ‘if-
else’ statement declaration, therein, the iterated particles 𝑥, 𝑦, 𝑧 and 𝑤
axis values are stored, if the particle is acknowledged better that the
currently-known ‘best’ particle; the probability weight of the iterated
particle is also registered, for the proceeding comparisons led by the
iterative procedure. Upon the procedure’s termination, the estimated
pose of the robot inherits the position and orientation composites of the
‘best’ particle; given the singularity of the estimate, the trackability of the
robot’s state is difficult to isolate, in correspondence with the resampling
frequency of the distribution. Also, the difficulty described is further
contributed to in the presence of erroneous laser scan data, that cannot
be mitigated, which renders the technique highly sensitive to false
representation too. Thus, the technique was also abandoned from the
configured state of the MCL algorithm.

Figure 16: Code listing, visualising the 'estimate_pose()' method, best
particle filtering operation, located within the PFLocaliser subclass.

Hierarchical Agglomerative Clustering – an agglomerative

type hierarchical clustering algorithm, used to “group objects in clusters

based on their similarity” [20], which as a bottom-up approach to data
clustering, starts by “treating each object as a singleton cluster”, before
they are overtime merged “to create bigger clusters” [21] containing all
objects, or particles comprising the cloud. The functional purpose of the
algorithm when concerning the particle filter, is to identify and cluster
similar particles in its distribution, based on their distance relations, such
that a summed importance of each data partition can be calculated to
identify the cluster facilitating the highest belief factor, that when
averaged alike the operation of the global mean technique, will enable
the robots state to be more-accurately represented. Operationally, with
the support of a ‘for-loop’, the technique initially prepares the pose data
of each particle in the current-state cloud, as a proximity or distance
matrix [22], that requires the pose data to be transposed column-wise, to
conform to the standard of. This is a formality that is imperative to the
operations of the linkage algorithm elected, which is then utilised to
“groups pairs of objects into clusters based on their similarity” [20],
calculated from the distance matrix that is prepared and passed.
Governing the similarity calculations, are a range of linkage methods [22]
and associated distance metrics for agglomerative type clustering, which
ultimately populates the clusters, where at each step of either algorithm,
“the two clusters that are the most similar are combined into a new bigger
cluster” [20]. Elected for the purposes of this work, the ‘median’ method,
otherwise known as the Weighted Pair Group Method with Arithmetic
Mean (WPGMA) algorithm [23], is targeted for computing the similarities
between the particles and deriving the resultant cluster formations; the
methods election was motivated by its centroid-averaging focus [22],
which was sought accurate, as a representation of the mean of medians.
Such that when two clusters are merged to form a new cluster composite,
the average of their centroids provides the new clusters centroid, where
the distance between the two clusters is correlated with the distance
between their centroids [20]. Supporting the methods grouping
operation, the median linkage method utilises the Euclidean distance
metric, which “calculates the shortest distance between two points” [21];
given two vectors or points 𝑝1 and 𝑝2, the Euclidean distance between
them is calculated as:

√(𝑥𝑝1
− 𝑥𝑝2

)
2

+ (𝑦𝑝1
− 𝑦𝑝2

)
2

Proceeding from the grouping operations of the linkage

method, the hierarchical clustering formations of the particle cloud are
then encoded as a linkage matrix, representing the formations as a
“hierarchical clustering tree” [20], which requires partitioning by a cutting
operation, to instantiate the desired series of particle clusters. Specific to
the method concerned, a threshold value is provided to define the “cut
height” of the clustering tree, in which is used to segment the tree into
“several groups” representing the clusters; relative to the count of online
particles configured and their noise distributions, a cut height of ‘0.35’
was passed to generally produce several clusters, that would assumably
source the actual pose of the robot better than many or very few clusters
alternatively. Advancing from the population of the clusters, each particle
in the current-state cloud is then iterated through via ‘for-loop’, and its
associated importance weight is then accumulated for the appointed
cluster that it is identified as a member of; this is given by the flat cluster
vector computed, containing the cluster identity that each particle or
“observation” [20] belongs to. Upon amassing each cluster’s posterior
belief, the cluster with the highest belief factor that assumes to be the
most-accurate state representation of the robot, can then be identified;
using a ‘for-loop’, the position and orientation values of each particle
constituting the cluster identified, can then be averaged via the series of
accumulation and division operations explored within the global mean
technique. The value computed thus represents the pose estimate of the
robot, which in the presence of outlying and erroneous data types, can
combat, given the formulation of multiple clusters, that mitigate the
effects of ambiguities, through an average-selection scheme rather than
strictly averaging the poses of the entire distribution. As well as mitigating
sensitivity via centroid linkage [20], given the focus upon the point of
intersection of all medians, which in the case of three clusters, performs
as though the robots state is being triangulated. Providing these factors,
HAC is elected as the active clustering technique in the submitted state of
the MCL algorithm.

Figure 17: Code listing, visualising the primary section of the
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC)

algorithm, located within the PFLocaliser subclass.

Figure 18: Code listing, visualising the secondary section of the
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC)

algorithm, located within the PFLocaliser subclass.

Figure 19: Code listing, visualising the tertiary section of the
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC)

algorithm, located within the PFLocaliser subclass.

From acquiring the pose estimate of the robot, the position
and orientation values of the pose can then be output to a command shell
window sponsored by the RoS development platform, per timestep
surpassed. Unlike the robots position estimate, its orientation value is cast
from quaternion to Euler notation, using the provided method
‘euler_from_quaternion()’; this purposes to allow the orientation
estimate of the robot to be acknowledged as a yaw coefficient, that is
better understood as a measure of degrees, for which it is further casted
from radians into, to fulfil.

Figure 20: Code listing, visualising the 'estimate_pose()' method, console
output configuration, located within the PFLocaliser subclass.

Figure 21: Command shell window visualisation, displaying the output
representing the estimated pose of the robot, published to the
‘estimatedPose’ data topic and directly after HAC operations.

Additional to the textual output of the robots estimated

pose, within the RVIZ visualisation tool of the RoS development platform,
the estimated pose topic data is also displayed graphically, via a lone pose
depicting an arrow; where the foot of the arrow represents the localised,
position estimate of the robot, and its head representing the orientation
(heading) estimate of the robot.

Figure 22: RVIZ tool visualisation, graphically depicting the estimated
pose of the robot, published to the ‘estimatedPose’ data topic.

IV. Evaluation

A. Parametric Influence

Throughout the development cycle of the MCL algorithm, the
number of laser sensor readings that the robot considers when updating
its state via the probabilistic model of perceptions, was modified to
establish balance between the accuracy of the robot’s state
representation and the computational expense incurred. As already
mentioned within the earlier developments of this paper, for the
configuration submitted, the robot utilises ninety prior observations to
correct the poses of particles calculated by its prediction model; this has
allowed the robot to appropriately evaluate its state predictions whilst
remaining computationally inexpensive to calculate. Aligned within the
RVIZ visualisation tool, the spread of the posterior distribution is
seemingly less abnormal upon the robot traversing through its
environment and whilst remaining stationary, compared to the original,
twenty readings configured. Moreover, it can be observed that an
accurate state of convergence is more-frequently achieved, which
assumes that a higher observational capacity reduces the likelihood of
false state representation via environmental ambiguities.

In focus of the count of online particles used to construct the
particle cloud, to represent the state of the robot more-accurately, it was
discovered that larger sample sets were beneficial; where trialled and
under influence of time constraints, one-thousand particles were found
to be the most triumphal in localising the robot with an unknown pose,
initially, compared to the five-hundred, two-hundred (configured) and
one-hundred counts tested also. This is assumed to be in effect of more
particles occupying a similar space, that can better and more densely
confirm the actual state of the robot. However, as previously told and in
acknowledgement of a non-adaptive scheme, there evidently exists a
trade-off between the count of online particles and computational
expense incurred also. For which, a slightly depreciated performance is
opted for, to preserve computational resources during the algorithm’s
execution, given that MCL operates with a constant sample count that is
computational unnecessary overtime and consequentially costly.
Therefore, a constant value of two-hundred is settled, that allows the
desired, initial, uniform dispersal of the particles to be achieved still,
respective of the environments size; relative to the RVIZ visualisation tool,
the robot can be observed to overcome ambiguities caused by structural
symmetries, rendering the configuration submitted suitable for
deployment, despite the particle count re[resenting a reduced amount.

Relevant to the motion model and resampling noise
parameter configurations, the values of said parameters were initially
trialled as constants and were insignificant by value, given that the robots
initial pose estimate could be manually instructed and once localised,
tracked adequately. However, the configuration was observed to be
prone to symmetrical ambiguities in the robots environment, for which
the convergence state of the particle cloud could not revert to dispersion,
to overcome falsely representing the robots pose; as well, in the presence
of computational malfunction and timestep inconsistences caused by
extended computational resource consumption, the particles when
posing with insignificant noise coefficients, were often found to lag behind
the real state of the robot, overtime. Providing these observations, each
parameters value was adapted to being sampled from an independent
normal distribution, to inherit variance and reserve a degree of state
trackability, overtime, for overcoming the local tracking problem of
mobile robot localisation and ambiguities caused by structural similarities
of the robot’s environment. In which, the distributions were initially

configured large for the resampling noise parameters, to address the
probabilistically equivalent potential of the robot existing within the
structural arrangement of the environment, with all possible poses; this
decision targeted the kidnapped robot problem mostly, whilst nullifying
the perceived need to manually define the initial pose estimate of the
robot. Inevitably, the configuration was successful, as the posterior
distribution was able to converge overtime to achieve localisation, for
which is why the distributions are preserved in the submitted state of the
algorithm. This design decision was accordingly complemented by a value
reduction scheme, as mentioned in prior sections, to emulate a gradual
state of convergence; otherwise, vast distributions would prevent the
particles from ever converging and thus, localisation would not be
possible. Meanwhile, bearing relations to the motion model noise
parameter values, they too became to be sampled from uniform
distributions, to inherit variance, also for motion-tracking purposes.
However, the range of the distributions were preserved to be small, for
factoring the maximum velocity permitted by the robot’s mechanical
composition, when predicting the magnitude of displacement in the
robots pose, during its posterior distribution being resampled.
Collectively, the parameter values revealed previously, enable the
localisation state of the MCL algorithm to behave as desired, such that all
the mentioned problems sponsored by mobile robot localisation, are
alleviated.

Lastly, in acknowledgement of the HAC technique most-
accurately representing the robots pose estimate overtime, the threshold
constant representing the cut height of the hierarchical clustering tree
produced by the algorithm was modified, to observe the effects of a
higher and lower presence of particle clusters, in determining the robots
estimated state. Per the command shell and RVIZ visualisation tool
outputs configured, it was observed that using a mediocre amount of
particle clusters better stabilised and represented the state of the robot,
in comparison to both the significant and insignificant amount
alternatives tested. Which is assumed to be the cause of catering for
increased counts of outlying and erroneous data types and inversely,
averaging fewer centroids to yield a representative point of intersection,
which consequentially offsets the estimate from the real pose of the
robot, more-frequently overtime, given each alternatives sensitivity
prospect to sudden displacements in the robot’s state. Thus, a mediocre
amount conforming to the value of ‘0.35’ was configured, as the best
coefficient found to mitigate the pose estimates sensitivity, to sudden
displacements in the robot’s position and orientation; given the bottom-
up approach defining the clustering technique, a smaller cut height
coefficient respectively generates more clusters from the particle cloud.

B. Robot State Representation

Figure 23: Particle filter initialisation visualisation, particles are uniformly
distributed amongst the environment, initially.

Figure 24: Particle filter converging visualisation, particles comprising the
cloud form densities around regions promising to the robot’s real state.

Figure 25: Particle filter ambiguity visualisation, particles formulate
multiple densities reflecting uncertainty, concerning the structural

symmetry of the robot’s environment.

Figure 26: Particle filter localisation visualisation, particles converge to
the most promising particle density overtime, becoming denser whilst the

opposing density becomes more deprived.

Figure 27: Particle filter local tracking visualisation, particles track the
state of the robot upon converging to its pose estimate prior, as the state

of the robot becomes approximately known.

V. Conclusion

This paper presented Monte Carlo Localisation (MCL); a
probabilistic, sample-based algorithm appointed to the problem domain
of mobile robot localisation and subsequently, target-tracking. Dissimilar
to the prior approaches to mobile robot localisation submitted in the field,
MCL applies a random sampling strategy equivalent to the procedure of a
recursive Bayes filter, to represent the posterior belief of the robot,
overtime. This presents a series of improvements over former methods,
such that MCL typically poses a higher degree of accuracy within state
representation by comparison, from the significant reduction in
computational resource consumption, that once posed restraints on the
number of observations or sensor readings factoring each pose estimate.
As well, given its recognisably simple implementation, it is regarded a lot
easier to implement, when compared to the prior Markov approaches to
localisation. Providing the resampling scheme it incorporates, MCL
overtime, can also, attractively favour likely states over unlikely ones, to
achieve a convergence state that enables local tracking and a global
estimate to be realised.

Aligned with the evaluation procedure and state

representations explored for the implementation of the MCL algorithm
presented, it is evident that the robot displays a competency to localise
itself within a known environment. However, the particle filter also
demonstrates vulnerability to environmentally-derived ambiguities, that
consequently offset the robots pose estimate from its real state; if
subjected to a dynamic and therefore partially-known environment, the
robot is assumed inept of localising itself due to prospects of kidnapping.

In future works, it would be beneficial for adaptive schemes
to have an increased presence, as well would three-dimensional models
and other clustering techniques for better estimating the robot’s state.

References

[1] Fox, D. and Burgard, W. and Dellaert, F (1999) Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots. In:
Proceedings of the National Conference on Artificial Intelligence, July
1999, Orlando, Florida, USA. Berlin: ResearchGate, pp. 343-349.

[2] Fox, D. and Burgard, W. and Dellaert, F (2001) Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence. [Online] 128 (1-2).
Available from:
https://www.researchgate.net/publication/222559675_Robust_Monte_
Carlo_Localization_for_Mobile_Robots [Accessed: 14/05/21].

[3] Génération Robots (2021) Pioneer P3-DX mobile robot. [Online]
Génération Robots. Available from:
https://www.generationrobots.com/en/402395-robot-mobile-pioneer-
3-dx.html [Accessed: 14/05/21].

[4] ROS (2021) ROS. [Online] ROS. Available from: https://www.ros.org/
[Accessed: 14/05/21].

[5] ROS (2021) Adept MobileRobots Pioneer and Pioneer-compatible
platforms. [Online] ROS. Available from:
http://wiki.ros.org/Robots/AMR_Pioneer_Compatible#Laser_Rangefinde
rs [Accessed: 14/05/21].

[6] Hanzel, J. and Kľúčik, M. and Jurišica, L. and Vitko, A. (2012) Range
Finder Models for Mobile Robots. Procedia Engineering. [Online] 48.
Available from:
https://www.sciencedirect.com/science/article/pii/S1877705812045675
[Accessed: 14/05/21].

[7] Fabrizi, E. and Ulivi, G. (1997) Sensor Fusion for a Mobile Robot with
Ultrasonic and Laser Rangefinders. IFAC Proceedings Volumes. [Online]
30 (7). Available from:
https://www.sciencedirect.com/science/article/pii/S1474667017432903
[Accessed: 14/05/21].

[8] Dellaert, F. and Fox, D. and Burgard, W. and Thrun, S. (1999) Monte
Carlo localization for mobile robots. In: Proceedings 1999 IEEE
International Conference on Robotics and Automation (Cat.
No.99CH36288C), Detroit, MI, USA, May 1999. New York: IEEE, pp. 1322-
1328.

[9] Bukhori, I. and Ismail, Z. (2017) Detection of kidnapped robot
problem in Monte Carlo localization based on the natural displacement
of the robot. International Journal of Advanced Robotic Systems. [Online]
14. Available from:
https://www.researchgate.net/publication/318354950_Detection_of_ki
dnapped_robot_problem_in_Monte_Carlo_localization_based_on_the_
natural_displacement_of_the_robot [Accessed: 14/05/21].

[10] Rekleitis, I. (2004) A particle filter tutorial for mobile robot
localization. [Online]. Available from:
https://www.researchgate.net/publication/244978679_A_particle_filter
_tutorial_for_mobile_robot_localization [Accessed: 14/05/21].

[11] ROS (2021) map_server. [Online] ROS. Available from:
http://wiki.ros.org/map_server [Accessed: 14/05/21].

[12] ROS (2021) rviz. [Online] ROS. Available from:
http://wiki.ros.org/rviz [Accessed: 14/05/21].

[13] NumPy (2021) numpy.random.vonmises. [Online] NumPy. Available
from:
https://numpy.org/doc/stable/reference/random/generated/numpy.ran
dom.vonmises.html [Accessed: 14/05/21].

[14] NumPy (2021) numpy.random.uniform. [Online] NumPy. Available
from:
https://numpy.org/doc/stable/reference/random/generated/numpy.ran
dom.uniform.html [Accessed: 14/05/21].

[15] Hayes, A. (2021) Empirical Rule. [Weblog] Investopedia. 5th March.
Available from: https://www.investopedia.com/terms/e/empirical-
rule.asp [Accessed: 14/05/21].

[16] Golan, E. (2014) Why Abstraction is Really Important. [Weblog]
DZone. 3rd April. Available from: https://dzone.com/articles/why-
abstraction-really [Accessed: 14/05/21].

[17] De Luca, G. (2020) Roulette Selection in Genetic Algorithms.
[Weblog] Baeldung. 19th October. Available from:
https://www.baeldung.com/cs/genetic-algorithms-roulette-selection
[Accessed: 14/05/21].

[18] Martinelli, A. and Siegwart, R. (2003) Estimating the Odometry Error
of a Mobile Robot during Navigation. [Online]. Available from:
https://www.researchgate.net/publication/37441222_Estimating_the_O
dometry_Error_of_a_Mobile_Robot_during_Navigation [Accessed:
14/05/21].

[19] Newcastle University (2021) Roulette wheel selection. [Online]
Newcastle University. Available from:
http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php
[Accessed: 14/05/21].

[20] Data Novia (2021) Hierarchical Clustering in R: The Essentials.
[Online] Data Novia. Available from:
https://www.datanovia.com/en/lessons/agglomerative-hierarchical-
clustering/ [Accessed: 14/05/21].

[21] Maklin, C. (2018) Hierarchical Agglomerative Clustering Algorithm
Example in Python. [Weblog] Towards Data Science. 31st December.
Available from https://towardsdatascience.com/machine-learning-
algorithms-part-12-hierarchical-agglomerative-clustering-example-in-
python-1e18e0075019 [Accessed: 14/05/21].

[22] SciPy.org (2021) scipy.cluster.hierarchy.linkage. [Online] SciPy.org.
Available from: https://docs.scipy.org/doc/scipy-
0.18.1/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cl
uster.hierarchy.linkage [Accessed: 14/05/21].

[23] SciPy.org (2021) scipy.cluster.hierarchy.median. [Online] SciPy.org.
Available from: https://docs.scipy.org/doc/scipy-
0.19.0/reference/generated/scipy.cluster.hierarchy.median.html
[Accessed: 14/05/21].

