
Monte Carlo Localisation: Localising a Mobile 
Robot Within a Known Environment 

 

Adam Hubble 
P17175774 

 
Abstract – Mobile robot localisation is the problem 

recognised as the determination of the position and orientation, or pose, 
of a mobile robot within a given environment, from using sensory data 
that the robot collects as observations of its subjected environment, 
overtime. This paper explores the probabilistic localisation technique 
renowned as Monte Carlo Localisation (MCL), to mitigate the abovesaid 
localisation problem via pose estimation, for a wheeled mobile robot 
that exists within a known environment. 
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I. Introduction 
 

In the proceeding passages, explores the operational 
composition of the Monte Carlo Localisation (MCL) algorithm [1], as the 
localisation technique instructed for overcoming the mobile robot 
localisation problem [2], and for the application of a mobile robot 
navigating within a known environment. As well, is the operational 
overview and evaluation of the MCL techniques implementation, that has 
been adapted to the purpose of the Pioneer P3-DX [3] model of mobile 
robot, instructed for use.  
 

 
 

Figure 1: Depiction of the Pioneer P3-DX mobile robot [3]. 
 

Notably, opposing the traditional application of the array of 
Sound Navigation and Ranging (SONAR) sensors that the Pioneer P3-DX 
model employs and operates with, and per the support of the Robot 
Operating System (ROS) software platform [4][5], the robot alternatively 
utilises an array of Laser Rangefinder (LR) sensors, that are preferred for 
the degree of precision demanded for estimating the pose of the robot, 
overtime. The preference for precision correlates with the information 
obtained by ultrasonic sensors, which is known to be “noticeably 
uncertain” [6], in consequence of ultrasonic sensor emissions undergoing 
“multiple reflections or specular reflection away from the sensor, giving 
false distance readings” [7]. 
 

Subsequently, the paper is assembled into five divisions of 
focus, one of which focuses is this very introduction. Explored by the 
proceeding sections, are discussions relevant to the operations of the 
localisation technique appointed, the adapted implementation of the 
technique said, as well as its performance evaluation in accordance with 
the relevant test routines conducted and concluding observations that 
concern the localisation techniques resultant capability, to address the 
localisation problem announced. 
 

II. Localisation Technique 
 

Recognisably, there exists two fundamental challenges in 
mobile robotics, relative to the accomplishment of accurate and efficient 
sensor-based localisation, “global position estimation and local position 
tracking” [8]; for which, a mobile robot “seeks to estimate its position in 
a global coordinate frame” [1] of a given environment or space. Simply, a 
mobile robot should be able to estimate and represent its “pose (location, 
orientation) relative to its environment” [2]. Global position estimation 
can be understood as the “ability to determine the robot’s position in a 
priori or previously learned map” [8], based upon the robots’ sensory 
observations of the subjected environment, and the displacements 
measured in the robots odometry data, as it pursues navigation. Upon 
initially localising the robot in the map, local tracking can then be 

acknowledged as the “problem of keeping track of that position over 
time”, which is vastly problematic and considered the “most-studied 
problem” [1], as the global position estimation then “has to accommodate 
small errors in its odometry as it moves” throughout the environment. 
Given the nature of the work presented, the localisation problem 
anticipates that the robot does not initially know its position nor 
orientation in the environment provided, for which presents a “much 
more difficult localisation problem, that of estimating its position from 
scratch”; this is recognised as the global localisation problem, which is 
problematic as the robots pose estimate “cannot be assumed to be small” 
[2], initially. Moreover, even more problematic is the kidnapped robot 
problem [9], which is defined as a condition, for when a “robot is instantly 
moved to another position” in the corresponding environment, without 
being detected and acknowledged by the procedure governing the global 
position estimation of the robot. This problem is known to be typically 
used to exercise a robot’s “ability to recover from catastrophic localisation 
failures” [2], where unlike the global localisation problem, it is possible 
that the robot “might firmly believe itself to be somewhere else at the 
time of the kidnapping”. From knowing its position and orientation in the 
global coordinate frame of a given environment or space, can the robot 
“make use of existing maps, which allows it to plan and navigate reliably 
in complex environments” [8], whilst also being “efficient”, when 
accompanied by accurate local tracking. 
 

In attempt to rectify the two underlying challenges posed by 
mobile robot localisation, the work proposes the probabilistic, Monte 
Carlo Localization (MCL) algorithm, that adopts the techniques of Monte 
Carlo methods that were first “introduced in the seventies, and recently 
rediscovered independently in the target-tracking” [1] domain of 
computing. As recognised, MCL has the potential to “solve the global 
localisation and kidnapped robot problem in a robust and efficient” [8] 
manner and accommodate “arbitrary noise distributions”; although, the 
regular MCL algorithm is known to be prone to the kidnapped robot 
problem, given that there “might be no surviving samples nearby the 
robot’s new pose after it has been kidnapped” to converge to. 
Fundamentally, MCL purposes to represent the pose or belief of the robot 
by “a set of samples” or particles, drawn from the “posterior distribution” 
of robot poses (a cloud of particles); MCL represents the posteriors that 
approximate the desired distribution (spread) via a “random collection of 
weighted particles”, which simply estimate the state of the robot, 
recursively, as a particle filter [10].  
 

 
 

Figure 2: Visualisation of a kidnapped robot problem instance, where the 
red-linear lines denote the sensory readings of the robot, to each of the 

landmarks in the robot’s environment from the origin, represented by the 
best particle [9]. 

 
Within the context of localisation, a particle filter as MCL 

classifies to be, aims to “track a variable of interest as it evolves over time” 
[10]. Particle filters employ a range of characteristics to achieve said 
behaviour and as sample-based density approximation methods, overlook 
previous works submitted to the field of mobile robot localisation, like 
that of Kalman’s filter-based techniques and Markov’s topological and 
grid-based approaches to localisation [8][1], that alternatively 
approximate posteriors in parametric form. Some of the many 
characteristics that render particle filters superior to the previous works 
listed, are the following [8]: 
 

❖ Particle filters can accommodate (almost) arbitrary sensor 
characteristics, motion dynamics and noise distributions. 

❖ Particle filters are recognised universal density 
approximators, that feature less-restrictive formations of 
posterior density when compared to parametric approaches. 

❖ Particle filters allocate computational resources in areas of 
the posterior density that are deemed most accurate, 



through sampling in proportion to the posterior likelihood 
(belief). 

❖ Particle filters are capable in adapting to the quantity of 
computational resources available for their execution by 
managing the number of samples online. 

❖ Particle filters are regarded as easy to implement, which 
defines them as an attractive paradigm for addressing mobile 
robot localisation. 

 
However, particle filters also entertain many deficiencies for 

the application of mobile robot localisation, which derive from the 
stochastic nature of density approximation offered; some of said 
deficiencies in focus of MCL, are exactly: 
 

❖ If the sample set size is small, a well-localised robot may lose 
track of its position due to MCL failing to generate a sample 
in the corresponding location of the robot’s environment. 

❖ If there are no samples nearby the robot’s new pose after 
being kidnapped, the regular MCL algorithm is unable to 
combat the kidnapped robot problem. 

 
Beyond the scope of the work presented, exists an “adaptive 

sampling scheme” [1], renowned as Adaptive Monte Carlo Localisation 
(AMCL), that determines the number of samples drawn from the 
distribution “on-the-fly” to represent the robots pose; this scheme 
purposes to “trade-off” the computational expense of the algorithm’s 
execution, for a depreciating accuracy of representation of the robots 
estimated pose. Resultingly, MCL operates with a constant sample count 
that is computational unnecessary overtime and consequentially costly, 
whereas AMCL uses more “samples during global localisation when they 
are most needed” and fewer when tracking the robot, as the position of 
the robot becomes “approximately known”. Hence adaptive. 
 

Particle Filter (Dieter Fox) Algorithm Pseudocode 

1. Inputs: 𝑆𝑡−1 ← {〈𝑥𝑡−1
𝑖 ,  𝑝𝑡−1

𝑖 〉 | 𝑖 = 1, 2, … , 𝑛} 
2. 𝑆𝑡 ← ∅ 
3. 𝛼 ← ∅ 
4. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨 
5.       Sample index 𝑗 from discrete distribution given by         
                weights in 𝑆𝑡−1 
6.       Sample 𝑥𝑡

𝑖  from 𝑝(𝑥𝑡  | 𝑥𝑡−1, 𝑢𝑡−1) conditioned on 𝑥𝑡−1 
      and 𝑢𝑡−1 

7.       𝑝𝑡
𝑖 ← 𝑝(𝑧𝑡  | 𝑥𝑡

𝑖) 
8.       𝛼 ← 𝛼 +  𝑝𝑡

𝑖  
9.       𝑆𝑡 ← 𝑆𝑡 ∪ {〈𝑥𝑡

𝑖 ,  𝑝𝑡
𝑖〉} 

10. 𝐞𝐧𝐝 𝐟𝐨𝐫 
11. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨 

12.       𝑝𝑡
𝑖 ←

𝑝𝑡
𝑖

𝛼
 

13. 𝐞𝐧𝐝 𝐟𝐨𝐫 
14. Output 𝑆𝑡  sample set (posterior distribution) 

 

A. Monte Carlo Localisation 
 

MCL is in essence a recursive Bayes filter, which can be 
utilised to estimate the “posterior distribution of robot poses conditioned 
on sensor data” [2]; sensory data is surveyed by the robot throughout its 
exploration routine in the environment that it is exposed to. Summarily, 
Bayes’ filters address the problem of “estimating the state 𝑥 of a 
dynamical system from sensor measurements”. Providing the nature of 
the work presented, the dynamical system can be acknowledged as the 
relation between the mobile robot and its environment, where the state 
𝑥, characterises the “robot’s pose therein (often specified by a position in 
a two-dimensional Cartesian space and the robot’s heading direction)”. 
Fundamentally, Bayes’ filtering aims to estimate the state 𝑥, or a 
probability density, “over the state space conditioned on the data” 
concerning all previous observations and measurements of the robots 
odometry and its environment, which is the posterior renowned as belief 
(posterior belief), that can be given by a probability density function (PDF), 
characterised as such: 
 

𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡 | 𝑧𝑡, 𝑢𝑡) 
 

Where 𝑥 denotes the state or pose of the robot, 𝑥𝑡 is the 
state of the robot at time 𝑡, such that the states representation can be 
characterised as 𝑥𝑡 = 〈𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡〉, given all past sensory perceptions about 
the robot’s system (control measurements) 𝑢1:𝑡 =  {𝑢1, 𝑢2, … , 𝑢𝑡} and all 
sensory perceptions about the robot’s environment (observations) 𝑧1:𝑡 =
 {𝑧1, 𝑧2, … , 𝑧𝑡}; both of which measurements contain uncertainties. At 
time 𝑡, the posterior PDF can also be characterised as: 
 

𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡 | 𝑧𝑡, 𝑢𝑡−1, 𝑧𝑡−1, 𝑢𝑡−2, … , 𝑢0, 𝑧0) 
 

Simply, the posterior distribution (belief) is represented by 𝑛 
weighted, random samples or particles 𝑆 = {𝑆𝑖 | 𝑖 = 1, 2, … , 𝑛}, which as 
mentioned and denoted above, are each comprised of a position 〈𝑥, 𝑦〉 
and orientation (heading) 𝜃, with a discrete likelihood or probability 
(belief) of 𝑝 ≥ 0; at time 𝑡, this is collectively denoted as 𝑆𝑡 =

{〈𝑥𝑡
𝑖,  𝑝𝑡

𝑖〉 | 𝑖 = 1, 2, … , 𝑛}, where 𝑥𝑡 once more represents the state or 

pose of the robot at the given interval. Derived from the Markov world 
assumption, Bayes’ filters assume that the “environment is Markov, that 
is, past and future data are (conditionally) independent if one knows the 
current state” of the robot 𝑥𝑡. When accounting for both Bayes rule and 
the assumption said, posterior belief can then be characterised as: 
 

𝐵𝑒𝑙(𝑥𝑡) = 𝛼𝑝(𝑧𝑡 | 𝑥𝑡)  𝐵𝑒𝑙̅̅ ̅̅ ̅(𝑥𝑡)  
 

Where the term: 
 

𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡) ← ∫ 𝑝(𝑥𝑡  | 𝑥𝑡−1, 𝑢𝑡−1) 𝐵𝑒𝑙(𝑥𝑡) 𝑑𝑥𝑡−1 
 
represents the probabilistic model of system dynamics, or prediction, or 
motion model alternatively, given that it “reflects the state transition due 
to robot motion” [9]; this model considers the detected change in the 
sensory perceptions of the robot’s system 𝑢𝑡, captured by its odometry 
sensors (prediction phase). Whereas the term 𝑝(𝑧𝑡 | 𝑥𝑡) denotes the 
probabilistic model of perceptions, or correction, or sensor model instead, 
given that it “incorporates sensor readings to update the robots state” 𝑥, 
which encompasses the calculation of the likelihood 𝑝 of the robot making 
observation 𝑧𝑡 (correction phase). Meanwhile, 𝛼 denotes the 
normalisation constant used to ensure that the integral of the posterior 
belief is normalised to the value of one; it is necessary for the importance 
factors to be normalised and sum to the value of one, so that they “define 
a discrete probability distribution” [2]. In acknowledgement of the models 
mentioned, the recursive state of Bayes’ filters can be componentised into 
the following, identified phases: 
 

Prediction – at each timestep 𝑡, a set of samples 𝑆𝑡 are drawn 
from the “previously computed sample set” [1]  𝑆𝑡−1, relative to the 
likelihood of each states “𝑝-value”, in response to the robot traversing 
and its pose requiring to be reapproximated after the “motion command” 
is executed. Here the probabilistic model of system dynamics is applied to 
each state or particle comprising the posterior distribution 𝐵𝑒𝑙(𝑥𝑡) by 
sampling from the density 𝑝(𝑥𝑡  | 𝑥𝑡−1, 𝑢𝑡−1) [8]; this is conditioned by the 
robots control measurements 𝑢𝑡. 
 

 
 

Figure 3: Visualisation of sample-based density approximation, for 
compiling the posterior belief of a non-sensing robot, using motion model 

(odometry sensor) measurements only [2]. 
 

Correction – at each timestep 𝑡, the robot’s sensory 
observations of the environment 𝑧𝑡 are then factored, for re-weighting 
each of the samples in the set 𝑆𝑡, relative to the probabilistic model of 
perceptions 𝑝(𝑧𝑡 | 𝑥𝑡); this determines each particles likelihood of 
accurately representing the current pose of the robot 𝑥𝑡, given the 
evidence 𝑧𝑡 collected. Upon sample set 𝑆𝑡 being re-weighted, the 
posterior distribution can then be corrected and converge, via resampling 
from the set using a selection mechanism, that selects “higher probability 
samples that have a high likelihood associated with them” [8]; this 
formulates an updated set of samples 𝑆𝑡, that better (more densely) 
approximates the pose of the robot at time 𝑡, relative to its environment.  
 

Proceeding from the posterior distribution being updated, 
both prediction and correction phases of MCL are repeated, recursively, 
to address the local tracking problem of mobile robot localisation. 
Preliminarily, the “initial belief characterises the initial knowledge about 
the system state” [2] 𝑥, however, in the absence of said knowledge, the 



posterior distribution (particle filter) is typically initialised by “a uniform 
distribution over the state space”, given that the probability of the robot 
existing in the environment with all possible poses is initially equivalent. 
 

Monte Carlo Localisation (MCL) Algorithm Pseudocode 

1. 𝑥̅𝑡 ← ∅ 
2. 𝑥𝑡 ← ∅ 
3. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨 
4.       𝑥𝑡

𝑖 ← 𝑚𝑜𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑢𝑡 , 𝑥𝑡−1
𝑖 ) 

5.       𝑝𝑡
𝑖  ← 𝑠𝑒𝑛𝑠𝑜𝑟𝑀𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑧𝑡 , 𝑥𝑡

𝑖) 
6.       𝑥̅𝑡 ← 𝑥̅𝑡 ∪ {〈𝑥𝑡

𝑖 ,  𝑝𝑡
𝑖〉} 

7. 𝐞𝐧𝐝 𝐟𝐨𝐫 
8. 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛 𝐝𝐨 
9.       draw 𝑥𝑡

𝑖  from 𝑥̅𝑡  with probability ∝ 𝑝𝑡
𝑖  

10.       𝑥𝑡 ← 𝑥𝑡 +  𝑥𝑡
𝑖 

11. 𝐞𝐧𝐝 𝐟𝐨𝐫 
12. Output 𝑥𝑡  robot state (posterior distribution) 

 

III. Software Implementation 
 

Aligned with the functional operations of the MCL algorithm 
explored, mobile robot localisation via MCL is achieved using three 
distinct procedures; one of which methods purposes to instantiate and 
initialise the particle filter, while another resamples and updates the 
particle filter, recursively, and the remaining method estimates the pose 
of the robot, via the posterior distribution populated, in cooperation with 
data clustering techniques. In the proceeding passages, identifies the 
implementation of the MCL algorithm proposed, in relation to the 
targeted development platform, RoS [4]. 
 

A. RoS Terminal Instruction 
 

For executing the software submitted, below, features the 
ordered series of command-line instructions required to evaluate and 
deploy the Pioneer P3-DX mobile robot, with localisation behaviours 
native to the MCL algorithm implemented. 
 

RoS Command-line Instruction Sequence 

Command shell one:  
Installing project dependencies (RoS Melodic) 

$sudo apt install ros-$ROS_DISTRO-pr2-teleop ros-$ROS_DISTRO-joy 
ros-$ROS_DISTRO-slam-gmapping ros-$ROS_DISTRO-map-server 

Build the package 
$cd catkin_ws/src/ 
$git clone https://github.com/justagist/socspioneer.git 

Build the catkin workspace 
$catkin_make 

 
Command shell two: 
Run a simulated environment and open a previously saved map 

$cd catkin_ws/ 
$source devel/setup.bash 
$roscore 

 
Command shell three: 
Run the RoS visualisation tool (RVIZ) 

$rosrun rviz rviz 
Open the graphical tools suite to load RVIZ and the map server 
 
Command shell four: 
Start the simulation with a robot, obstacle and provided world 

$cd catkin_ws/src/socspioneer/data 
$rosrun stage_ros stageros lgfloor.world 

Key R can be used to toggle 2D and 3D perspectives of the world 
Key D can be used to toggle the laser field-of-view visualisation 
 
Command shell five: 
Navigate the robot in the simulated environment 

$roslaunch socspioneer keyboard_teleop.launch 
Keys WASD translates the robot multi-directionally 
Keys QE orientates the robot bidirectionally 
 
Command shell six: 
Load the map of the provided world from a map server 

$cd catkin_ws/src/socspioneer/data 
$rosrun map_server map_server lgfloor.yaml 

 

 
Resultingly, a map series appears, originating from the map 

server [11] and RVIZ sessions [12] instructed for execution. 
 

 
 

Figure 4: Illustration of the RoS visualisation tool: RVIZ [12], displaying 
occupancy map topic data that depicts the robot’s environment, upon 

session initialisation. 
 

 
 

Figure 5: Map server [11] visualisation, displaying the prebuilt 
‘Igfloor.world’ environment, that features a red-indicated obstacle, blue-

indicated mobile robot, and black-indicated structural arrangement of 
the world. 

 

B. Particle Filter Initialisation 
 

Extending the state of the software package provided to 
facilitate the implementation of the MCL algorithm, and in focus of the 
subclass: PFLocaliser, that extends its base class: PFLocaliserBase, 
preliminarily, the parameters associated with an instance of the particle 
filter required independent variable declarations, for operation. 
Appropriately, this is addressed within the classes’ constructor method, 
thus enabling all other methods contained within the class to share 
equivalent access rights, which allows the values of the parameters to be 
multipurposed and to remain consistent across multiple methods, instead 
of their existing multiple declarations of the same variable(s). Therefore, 
within the method bespoken, contains the declarations and initial 
configurations of the variables constituting to the MCL algorithm. In which 
features the noise coefficients of the robot’s motion model, that as 
“compensation” [9] factors, aim to model uncertainty in the measure of 
the robot’s motion overtime; accordingly, each of the parameter’s values 
are initialised by “a uniform distribution over the state space” [2], as no 
prior knowledge of the robot’s state would yet be known. Additionally, 
there also exists variable declarations for particle resampling noise 
coefficients, that are randomly derived from uniform distributions, to 
offset the posterior distribution of the filter, in attempt to mitigate the 
presence of the kidnapped robot problem [9] initially, and to account for 
translational changes in the robot’s position, whilst the resampling 
procedure executes overtime. Therein, also defines the active clustering 
technique applied for estimating the robots pose, as well as the constant 
count of online particles, representing the posterior distribution of the 
filter, and the number of sensory readings that are considered and 
compared with the predictions conditioned by the robots control 
measurements 𝑢𝑡, when computing the particle weights in the 
algorithm’s correction phase. 
 



 
 

Figure 6: Code listing, visualising the '__init__()' method declaration, 
located within the PFLocaliser subclass. 

 
For instantiating an instance of the particle filter, there exists 

a method, namely ‘intiialise_particle_cloud()’; per the title appointed, the 
method functions to initialise the filters posterior distribution or the poses 
of particles (samples) comprising a cloud-like formation, upon the starting 
location of the robot in the corresponding environment being declared or 
updated, or alternatively when another occupancy grid map instance is 
instantiated. Operationally, the method conforms to instantiating a series 
of particles that comprise the particle cloud via a ‘for-loop’, for the length 
of the online particle count specified. Therein, each of the particles or 
pose objects are normally sampled a position, that is affected (multiplied) 
by the translational (𝑥 axis) and nautical (𝑦 axis) noise amounts sampled 
by the initial, uniform distributions, as well as an orientation, too affected 
by a uniform amount and sampled from a normal distribution but of an 
angular displacement type alternatively. Where the affecting amounts 
attempt to model the uncertainties presented by the robot’s motion-
tracking (odometry) capabilities and changes in the robot’s position whilst 
the posterior distribution is being resampled, that the algorithm employs 
for achieving a relatively accurate state representation. To model a 
Gaussian-type distribution from the circular-orientation of angular 
displacement, rotational noise is alternatively sampled from a von Mises 
distribution [13], that is also “known as the circular normal distribution”, 
on the interval [−𝜋, 𝜋]; this was more appropriate, given that it is the 
circular analogue of normal distribution. 
 

 
 

Figure 7: Code listing, visualising the 'initialise_particle_cloud()' method 
declaration, located within the PFLocaliser subclass. 

 
Noise parameters sample from larger uniform distributions 

initially, to address the probabilistically equivalent potential of the robot 
existing within the structural arrangement of the environment, with all 
possible poses; thus, particles are vastly, uniformly spread and do not 
form cluster-like densities. This presents MLC’s ability to represent 
“multimodal probability distributions” [8], which as a “precondition for 
localising a mobile robot from scratch”, better combats the likelihood of 
the kidnapped robot problem, as the posterior distribution converges 
overtime to achieve localisation; respectively, the noise amounts 
downscale with convergence. 
 

 
 

Figure 8: Visualisation of a particle cloud or global localisation 
initialisation (left), transitioning to the convergence state of achieving 

localisation of the mobile robot (right), overtime [1]. 
 

In correspondence with the values targeted for each 
parameter’s configuration, elected as the initial upper and lower bounds 
of each motion model noise parameter, the range [0.01, 0.3] was 
provided, in which any value “within the given interval is equally like to be 
drawn” [14] from. An insignificant range of values is justified, as motion 
model noise is considered a scaling factor for the predicted positions and 
orientations of the robot, which are assumed to be somewhat feasible 
prior; this is supported by global position estimation only requiring to 
accommodate for “small errors in its odometry as it moves” [1] 
throughout the environment, given the maximum velocity permitted by 
the robot’s mechanical composition [3]. Meanwhile, as the initial upper 
and lower bounds of the particle resampling, positional noise parameter, 
the range [75, 100] was configured, to disperse the particles considerably 
far from the origin of the initial pose estimate, relative to the size of the 
environment provided; as a “precondition for localising a mobile robot 
from scratch” [8], a sizeable spread is believed to enhance the global 
localisation of the robot, when the initial pose estimate is arbitrarily 
selected in the environment. Whereas for the initial upper and lower 
bounds of the particle resampling, rotational noise parameter, the range 
[1, 120] was targeted, to consider all possible starting orientations of the 
robot’s state, according to the empirical rule [15], which states that “for a 
normal distribution, almost all observed data will fall within three 
standard deviations of the mean or average”. Furthermore, as the sample 
set size, representing the count of particles comprising the cloud or 
posterior distribution, a constant value of two-hundred is provided, which 
sensibly addresses the desired, initial, uniform dispersal of said particles 
respective of the environments size, whilst being more computationally 
efficient than other counts proposed [2][8][9]. As well, when computing 
the particle weights in the algorithm’s correction phase, ninety sensory 
readings are accounted for as the robots’ observations 𝑧𝑡, to enable the 
comparison between the state predictions conditioned by the robots 
control measurements 𝑢𝑡, to be better evaluated and therefore yield 
more accountability than what a smaller amount could achieve; whilst 
remaining computationally inexpensive to calculate. 

 

C. Particle Filter Revision 
 

Encapsulating the correction operations of the MCL 
algorithm, exists an independent method, namely 
‘update_particle_cloud()’; implied by its title, the method functions to 
filter the particles comprising the posterior distribution recursively, 
overtime, through a selective resampling procedure that refines the 
distribution of the posterior belief gradually, to succumb to a convergence 
state that more accurately represents the localised pose of the robot. 
Given its recursive nature, accomplishes local position tracking that is 
otherwise sought to be a problematic behaviour to attain for mobile robot 
localisation [8]; as a functionally emulating call-back method, the 
operations contained are only invocated upon the robot recording new 
observations of its environment, that are published to the laser scan topic, 
as scan data.  Operationally, the method is comprised of two subsidiary 
functional blocks, each of which are sensibly abstracted into independent 
methods that can be invocated via function call statement; this 
componentised-driven design “helps encapsulate” [16] the behaviours of 
the algorithm, in favour of code base expansions and maintaining system 
robustness. Summarily, the initial functional block of the two performs 
the operations of a fitness (probability) proportionate selection algorithm, 
namely roulette-wheel selection [17], which purposes to resample the 
posterior distribution by formulating particles with new positions and 
orientations, derived from the probabilities of selected particles 
comprising its prior state. Meanwhile, the remaining functional block 
applies resampling noise to each of the particles constituting to the 
current-state cloud, to maintain a degree of dispersal that enables the 
posterior distribution to update and track changes in the robot’s position, 
mostly, whilst it is being resampled. Preceding each’s invocation, it is 
salient to compute and accumulate each particles likelihood (weight) of 
representing the state of the robot, accurately, relative to its perceptions 
of the surrounding environment, given the unreliable and noisy nature of 
odometer measurements [18]; fundamentally, the particle filter concerns 
the robot’s observations relative to the perceptual model, to confirm the 
pose estimated by the robot’s motion model. This subroutine is 
orchestrated by a ‘for-loop’, used to iterate through each particle 
representing the cloud, and targets the ‘get_weight()’ method defined in 
the SensorModel class, to compute each passed particles importance 
weight, relative to the latest laser scan data that is published to the 
aforementioned topic. 
 



 
 

Figure 9: Code listing, visualising the 'update_particle_cloud()' method 
declaration, located within the PFLocaliser subclass. 

 
Roulette-wheel selection – a stochastic selection mechanism, 

where the “probability for selection of an individual is proportional to its 
fitness” [17] or importance weight; the method is inspired by life-like 
roulette-wheels but dissimilarly, each of the slots comprising the wheel 
are weighted, such that the “larger the fitness of an individual is, the more 
likely is its selection”. Therefore, it can be assumed that the important 
weight of a particle is “proportional to its likelihood of selection”; given 𝑛 
particles comprising the posterior distribution 𝐵𝑒𝑙(𝑥𝑡), the summation of 
their probability weights ∑ 𝑝𝑖

𝑛
𝑖=1  as previously quoted, equates to the 

value of one, when each is normalised to the interval [0, 1]. Thus, a 
discrete distribution is formed; the algorithm targets higher-weighted 
particles more often that lower-weighted particles to achieve denser 
distributions and subsequently, more refined global estimates overtime, 
per resampling cycle surpassed.   
 

 
 

Figure 10: Graphical depiction of the roulette-wheel algorithm [19]. 
 
Modelled by a ‘for-loop’, initially a stop criterion is uniquely 

defined for every particle that is resampled, as a uniformly randomised 
percentile of the interval [0, 1] or the summation of all importance 
weights; this is achieved via a pseudo-random number generator and 
represents the sum of individual importance weights to be exceeded, 
before a particle is selected. Upon particle selection, the corresponding 
particle survives to the “next generation” [19], for which it is appended to 
the current-state cloud representing the posterior belief of the robot. This 
iterative procedure recurs until the particle cloud constitutes 𝑛 samples, 
which in the case of the online particle count configured, is terminated 
after two-hundred iterations. 
 

 
 

Figure 11: Code listing, visualising the 'roulette_wheel_selection()' 
method declaration, located within the PFLocaliser subclass. 

 
Uncertainty modelling – to model displacements in the 

robot’s position and orientation, that may have occurred since the 
resampling procedure of the particle cloud was executed, motion model 
and resampling noise, as translational, nautical, and rotational types, is 
applied to each of the particle poses comprising the current-state cloud, 
to maintain a degree of dispersion that allows the posterior distribution 
to update and reflect deviations in the robot’s state, overtime. 
Operationally, the method gradually decrements the values that were 

originally configured for the motion model and particle resampling noise 
parameters, for emulating a progressive state of convergence and 
localisation of the robot, whilst jointly catering for potential incidences of 
the kidnapped robot problem, initially. Upon predefined threshold 
constants (arbitrarily appointed) being surpassed by the values of each of 
the parameter’s concerned, as addressed by a series of ‘if-else’ 
statements, each parameters value is then resampled from its 
corresponding uniform distribution, to retain insignificant volumes of 
variance, that appropriate the state of the robot becoming 
“approximately known” [1] and thus localised overtime. Beyond their 
resampling, each resampling noise parameter is then reapplied as a 
deviation factor, like within the initialise particle cloud method, for the 
Gaussian distributions that are used to resample the positional and 
rotational noise coefficients, representing the magnitude of potential 
displacement from the robot’s current state. These samples are also 
affected by the robot’s motion model noise parameters, to account for 
potential odometrical miscalculations, involved in the displacement 
forecast for the robot’s state. Once calculated, position-derived noise is 
then appended to the position of the corresponding particle in the cloud, 
whereas rotational-derived noise is separately injected, using the 
‘rotateQuaternion()’ method located within the ‘util.py’ file, to affect the 
orientation of the particle.  Notably, the interval for each uniform 
distribution of each noise parameter is arbitrarily settled, to sensibly 
reflect the potency of noise derived from odometer calculations and 
displacement in the robot’s state, in consideration of the robot’s peak 
traversal capabilities [3]. 
 

 
 

Figure 12: Code listing, visualising the primary section of the 
'particle_cloud_noise()' method declaration, located within the 

PFLocaliser subclass. 
 

 
 

Figure 13: Code listing, visualising the secondary section of the 
'particle_cloud_noise()' method declaration, located within the 

PFLocaliser subclass. 
 

D. Robot Pose Estimation 
 

In acquirement of a global estimate of the robot’s pose, 
relative to the current-state particle cloud, exists a method, namely 
‘estimate_pose()’; per the title specified, the method functions to provide 
a position and orientation estimate of the robot, relative to the poses of 
particles featured in the particle cloud or posterior distribution. 
Operationally, the method achieves global estimation via an array of data 
clustering techniques, that are used to sample particles conditioned by 
their fitness and other existential properties, in attempt to represent the 
robots state most-accurately; implemented as independent functional 
blocks, each of the data clustering techniques contained within the 
method only operate in singularity and not in parallel. This is addressed 
by a series of ‘if-else’ statements, for which the active clustering 
technique is conditioned by a string variable, representing the linguistic 
label associated to one of the pose estimation techniques available. 
 

Global mean – an averaging operation that establishes the 
mean position and orientation of all particle poses comprising the particle 
cloud. Iteratively, the technique accumulates the position and orientation 
values of every particles pose in the current-state cloud, separately by 
their 𝑥, 𝑦, 𝑧 and 𝑤 axes and with the support of a ‘for-loop’ declaration, 
before each accumulation is then riven by the count of online particles 
configured. Hence global mean 𝑥𝑡 = 𝑥̅𝑡.  

 



 
 

Figure 14: Code listing, visualising the 'estimate_pose()' method, global 
mean averaging operation, located within the PFLocaliser subclass. 

 
As the technique does not adhere to clustering explicitly, 

given that their only exists one density of particles that the procedure 
operates upon, the method is inadequate for rejecting outliers and 
representing the state of the robot accurately. For which the technique 
assumes the estimated pose sensitive to ambiguities, derived from the 
structural symmetries of environments, which initiates particle cloud 
partitioning that resultingly forms multiple, concentrated densities of 
particles in distinctive locations in the bespoken environment. Providing 
the mean operation of the procedure proposed, the robots state would 
be falsely represented in a space central to all densities formed, where 
presumably, few or no particles are present; this endorses the techniques 
negligence in the submitted state of the MCL algorithm. 
 

 
 

Figure 15: Visualisation of a particle cloud partitioned into separate, 
distinguished densities of particles, resulting from the structural 

symmetry of the environment exhibited [1]. 
 

Best particle – an importance weight filtering operation that 
establishes the particle appearing to represent the pose of the robot 
most-accurately, relative to all particle’s important weights. In which the 
particle facilitating the highest belief factor is elected to model the 
estimated pose of the robot, as the ‘best’ or fittest candidate for state 
representation. Similarly, the technique iterates through each particle in 
the current-state cloud, via ‘for-loop’, to then be able to access each 
samples importance weight using the ‘get_weight()’ method previously 
applicated, which is required for the comparative nature of determining 
whether the current particles importance is greater than any of the 
particles iterated prior. Said comparison is sensibly addressed by an ‘if-
else’ statement declaration, therein, the iterated particles 𝑥, 𝑦, 𝑧 and 𝑤 
axis values are stored, if the particle is acknowledged better that the 
currently-known ‘best’ particle; the probability weight of the iterated 
particle is also registered, for the proceeding comparisons led by the 
iterative procedure. Upon the procedure’s termination, the estimated 
pose of the robot inherits the position and orientation composites of the 
‘best’ particle; given the singularity of the estimate, the trackability of the 
robot’s state is difficult to isolate, in correspondence with the resampling 
frequency of the distribution. Also, the difficulty described is further 
contributed to in the presence of erroneous laser scan data, that cannot 
be mitigated, which renders the technique highly sensitive to false 
representation too. Thus, the technique was also abandoned from the 
configured state of the MCL algorithm.  
 

 
 

Figure 16: Code listing, visualising the 'estimate_pose()' method, best 
particle filtering operation, located within the PFLocaliser subclass. 

 
Hierarchical Agglomerative Clustering – an agglomerative 

type hierarchical clustering algorithm, used to “group objects in clusters 

based on their similarity” [20], which as a bottom-up approach to data 
clustering, starts by “treating each object as a singleton cluster”, before 
they are overtime merged “to create bigger clusters” [21] containing all 
objects, or particles comprising the cloud. The functional purpose of the 
algorithm when concerning the particle filter, is to identify and cluster 
similar particles in its distribution, based on their distance relations, such 
that a summed importance of each data partition can be calculated to 
identify the cluster facilitating the highest belief factor, that when 
averaged alike the operation of the global mean technique, will enable 
the robots state to be more-accurately represented. Operationally, with 
the support of a ‘for-loop’, the technique initially prepares the pose data 
of each particle in the current-state cloud, as a proximity or distance 
matrix [22], that requires the pose data to be transposed column-wise, to 
conform to the standard of. This is a formality that is imperative to the 
operations of the linkage algorithm elected, which is then utilised to 
“groups pairs of objects into clusters based on their similarity” [20], 
calculated from the distance matrix that is prepared and passed. 
Governing the similarity calculations, are a range of linkage methods [22] 
and associated distance metrics for agglomerative type clustering, which 
ultimately populates the clusters, where at each step of either algorithm, 
“the two clusters that are the most similar are combined into a new bigger 
cluster” [20]. Elected for the purposes of this work, the ‘median’ method, 
otherwise known as the Weighted Pair Group Method with Arithmetic 
Mean (WPGMA) algorithm [23], is targeted for computing the similarities 
between the particles and deriving the resultant cluster formations; the 
methods election was motivated by its centroid-averaging focus [22], 
which was sought accurate, as a representation of the mean of medians. 
Such that when two clusters are merged to form a new cluster composite, 
the average of their centroids provides the new clusters centroid, where 
the distance between the two clusters is correlated with the distance 
between their centroids [20]. Supporting the methods grouping 
operation, the median linkage method utilises the Euclidean distance 
metric, which “calculates the shortest distance between two points” [21]; 
given two vectors or points 𝑝1 and 𝑝2, the Euclidean distance between 
them is calculated as: 
 

√(𝑥𝑝1
− 𝑥𝑝2

)
2

+ (𝑦𝑝1
− 𝑦𝑝2

)
2
 

 
Proceeding from the grouping operations of the linkage 

method, the hierarchical clustering formations of the particle cloud are 
then encoded as a linkage matrix, representing the formations as a 
“hierarchical clustering tree” [20], which requires partitioning by a cutting 
operation, to instantiate the desired series of particle clusters. Specific to 
the method concerned, a threshold value is provided to define the “cut 
height” of the clustering tree, in which is used to segment the tree into 
“several groups” representing the clusters; relative to the count of online 
particles configured and their noise distributions, a cut height of ‘0.35’ 
was passed to generally produce several clusters, that would assumably 
source the actual pose of the robot better than many or very few clusters 
alternatively. Advancing from the population of the clusters, each particle 
in the current-state cloud is then iterated through via ‘for-loop’, and its 
associated importance weight is then accumulated for the appointed 
cluster that it is identified as a member of; this is given by the flat cluster 
vector computed, containing the cluster identity that each particle or 
“observation” [20] belongs to. Upon amassing each cluster’s posterior 
belief, the cluster with the highest belief factor that assumes to be the 
most-accurate state representation of the robot, can then be identified; 
using a ‘for-loop’, the position and orientation values of each particle 
constituting the cluster identified, can then be averaged via the series of 
accumulation and division operations explored within the global mean 
technique. The value computed thus represents the pose estimate of the 
robot, which in the presence of outlying and erroneous data types, can 
combat, given the formulation of multiple clusters, that mitigate the 
effects of ambiguities, through an average-selection scheme rather than 
strictly averaging the poses of the entire distribution. As well as mitigating 
sensitivity via centroid linkage [20], given the focus upon the point of 
intersection of all medians, which in the case of three clusters, performs 
as though the robots state is being triangulated. Providing these factors, 
HAC is elected as the active clustering technique in the submitted state of 
the MCL algorithm. 
 



 
 

Figure 17: Code listing, visualising the primary section of the 
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC) 

algorithm, located within the PFLocaliser subclass. 
 

 
 

Figure 18: Code listing, visualising the secondary section of the 
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC) 

algorithm, located within the PFLocaliser subclass. 
 

 
 

Figure 19: Code listing, visualising the tertiary section of the 
'estimate_pose()' method, Hierarchical Agglomerative Clustering (HAC) 

algorithm, located within the PFLocaliser subclass. 
 

From acquiring the pose estimate of the robot, the position 
and orientation values of the pose can then be output to a command shell 
window sponsored by the RoS development platform, per timestep 
surpassed. Unlike the robots position estimate, its orientation value is cast 
from quaternion to Euler notation, using the provided method 
‘euler_from_quaternion()’; this purposes to allow the orientation 
estimate of the robot to be acknowledged as a yaw coefficient, that is 
better understood as a measure of degrees, for which it is further casted 
from radians into, to fulfil. 
 

 
 

Figure 20: Code listing, visualising the 'estimate_pose()' method, console 
output configuration, located within the PFLocaliser subclass. 

 

 
 

Figure 21: Command shell window visualisation, displaying the output 
representing the estimated pose of the robot, published to the 
‘estimatedPose’ data topic and directly after HAC operations. 

 
Additional to the textual output of the robots estimated 

pose, within the RVIZ visualisation tool of the RoS development platform, 
the estimated pose topic data is also displayed graphically, via a lone pose 
depicting an arrow; where the foot of the arrow represents the localised, 
position estimate of the robot, and its head representing the orientation 
(heading) estimate of the robot. 
 

 
 

Figure 22: RVIZ tool visualisation, graphically depicting the estimated 
pose of the robot, published to the ‘estimatedPose’ data topic. 

 

IV. Evaluation 
 

A. Parametric Influence 
 

Throughout the development cycle of the MCL algorithm, the 
number of laser sensor readings that the robot considers when updating 
its state via the probabilistic model of perceptions, was modified to 
establish balance between the accuracy of the robot’s state 
representation and the computational expense incurred. As already 
mentioned within the earlier developments of this paper, for the 
configuration submitted, the robot utilises ninety prior observations to 
correct the poses of particles calculated by its prediction model; this has 
allowed the robot to appropriately evaluate its state predictions whilst 
remaining computationally inexpensive to calculate. Aligned within the 
RVIZ visualisation tool, the spread of the posterior distribution is 
seemingly less abnormal upon the robot traversing through its 
environment and whilst remaining stationary, compared to the original, 
twenty readings configured. Moreover, it can be observed that an 
accurate state of convergence is more-frequently achieved, which 
assumes that a higher observational capacity reduces the likelihood of 
false state representation via environmental ambiguities. 
 

In focus of the count of online particles used to construct the 
particle cloud, to represent the state of the robot more-accurately, it was 
discovered that larger sample sets were beneficial; where trialled and 
under influence of time constraints, one-thousand particles were found 
to be the most triumphal in localising the robot with an unknown pose, 
initially, compared to the five-hundred, two-hundred (configured) and 
one-hundred counts tested also. This is assumed to be in effect of more 
particles occupying a similar space, that can better and more densely 
confirm the actual state of the robot. However, as previously told and in 
acknowledgement of a non-adaptive scheme, there evidently exists a 
trade-off between the count of online particles and computational 
expense incurred also. For which, a slightly depreciated performance is 
opted for, to preserve computational resources during the algorithm’s 
execution, given that MCL operates with a constant sample count that is 
computational unnecessary overtime and consequentially costly. 
Therefore, a constant value of two-hundred is settled, that allows the 
desired, initial, uniform dispersal of the particles to be achieved still, 
respective of the environments size; relative to the RVIZ visualisation tool, 
the robot can be observed to overcome ambiguities caused by structural 
symmetries, rendering the configuration submitted suitable for 
deployment, despite the particle count re[resenting a reduced amount. 
 

Relevant to the motion model and resampling noise 
parameter configurations, the values of said parameters were initially 
trialled as constants and were insignificant by value, given that the robots 
initial pose estimate could be manually instructed and once localised, 
tracked adequately. However, the configuration was observed to be 
prone to symmetrical ambiguities in the robots environment, for which 
the convergence state of the particle cloud could not revert to dispersion, 
to overcome falsely representing the robots pose; as well, in the presence 
of computational malfunction and timestep inconsistences caused by 
extended computational resource consumption, the particles when 
posing with insignificant noise coefficients, were often found to lag behind 
the real state of the robot, overtime. Providing these observations, each 
parameters value was adapted to being sampled from an independent 
normal distribution, to inherit variance and reserve a degree of state 
trackability, overtime, for overcoming the local tracking problem of 
mobile robot localisation and ambiguities caused by structural similarities 
of the robot’s environment. In which, the distributions were initially 



configured large for the resampling noise parameters, to address the 
probabilistically equivalent potential of the robot existing within the 
structural arrangement of the environment, with all possible poses; this 
decision targeted the kidnapped robot problem mostly, whilst nullifying 
the perceived need to manually define the initial pose estimate of the 
robot. Inevitably, the configuration was successful, as the posterior 
distribution was able to converge overtime to achieve localisation, for 
which is why the distributions are preserved in the submitted state of the 
algorithm. This design decision was accordingly complemented by a value 
reduction scheme, as mentioned in prior sections, to emulate a gradual 
state of convergence; otherwise, vast distributions would prevent the 
particles from ever converging and thus, localisation would not be 
possible. Meanwhile, bearing relations to the motion model noise 
parameter values, they too became to be sampled from uniform 
distributions, to inherit variance, also for motion-tracking purposes. 
However, the range of the distributions were preserved to be small, for 
factoring the maximum velocity permitted by the robot’s mechanical 
composition, when predicting the magnitude of displacement in the 
robots pose, during its posterior distribution being resampled. 
Collectively, the parameter values revealed previously, enable the 
localisation state of the MCL algorithm to behave as desired, such that all 
the mentioned problems sponsored by mobile robot localisation, are 
alleviated. 
 

Lastly, in acknowledgement of the HAC technique most-
accurately representing the robots pose estimate overtime, the threshold 
constant representing the cut height of the hierarchical clustering tree 
produced by the algorithm was modified, to observe the effects of a 
higher and lower presence of particle clusters, in determining the robots 
estimated state. Per the command shell and RVIZ visualisation tool 
outputs configured, it was observed that using a mediocre amount of 
particle clusters better stabilised and represented the state of the robot, 
in comparison to both the significant and insignificant amount 
alternatives tested. Which is assumed to be the cause of catering for 
increased counts of outlying and erroneous data types and inversely, 
averaging fewer centroids to yield a representative point of intersection, 
which consequentially offsets the estimate from the real pose of the 
robot, more-frequently overtime, given each alternatives sensitivity 
prospect to sudden displacements in the robot’s state. Thus, a mediocre 
amount conforming to the value of ‘0.35’ was configured, as the best 
coefficient found to mitigate the pose estimates sensitivity, to sudden 
displacements in the robot’s position and orientation; given the bottom-
up approach defining the clustering technique, a smaller cut height 
coefficient respectively generates more clusters from the particle cloud. 
 

B. Robot State Representation 
 

 
 

Figure 23: Particle filter initialisation visualisation, particles are uniformly 
distributed amongst the environment, initially. 

 

 
 

Figure 24: Particle filter converging visualisation, particles comprising the 
cloud form densities around regions promising to the robot’s real state. 

 
 

 
 

Figure 25: Particle filter ambiguity visualisation, particles formulate 
multiple densities reflecting uncertainty, concerning the structural 

symmetry of the robot’s environment. 
 

 
 

Figure 26: Particle filter localisation visualisation, particles converge to 
the most promising particle density overtime, becoming denser whilst the 

opposing density becomes more deprived. 
 

 
 

Figure 27: Particle filter local tracking visualisation, particles track the 
state of the robot upon converging to its pose estimate prior, as the state 

of the robot becomes approximately known. 
 

V. Conclusion 
 

This paper presented Monte Carlo Localisation (MCL); a 
probabilistic, sample-based algorithm appointed to the problem domain 
of mobile robot localisation and subsequently, target-tracking. Dissimilar 
to the prior approaches to mobile robot localisation submitted in the field, 
MCL applies a random sampling strategy equivalent to the procedure of a 
recursive Bayes filter, to represent the posterior belief of the robot, 
overtime. This presents a series of improvements over former methods, 
such that MCL typically poses a higher degree of accuracy within state 
representation by comparison, from the significant reduction in 
computational resource consumption, that once posed restraints on the 
number of observations or sensor readings factoring each pose estimate. 
As well, given its recognisably simple implementation, it is regarded a lot 
easier to implement, when compared to the prior Markov approaches to 
localisation. Providing the resampling scheme it incorporates, MCL 
overtime, can also, attractively favour likely states over unlikely ones, to 
achieve a convergence state that enables local tracking and a global 
estimate to be realised. 

 
Aligned with the evaluation procedure and state 

representations explored for the implementation of the MCL algorithm 
presented, it is evident that the robot displays a competency to localise 
itself within a known environment. However, the particle filter also 
demonstrates vulnerability to environmentally-derived ambiguities, that 
consequently offset the robots pose estimate from its real state; if 
subjected to a dynamic and therefore partially-known environment, the 
robot is assumed inept of localising itself due to prospects of kidnapping. 
 

In future works, it would be beneficial for adaptive schemes 
to have an increased presence, as well would three-dimensional models 
and other clustering techniques for better estimating the robot’s state. 
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