
Two-Dimensional Environment
Mapping: Mobile Robots Within

Unknown Three-Dimensional Spaces

Adam Hubble
P17175774

Introduction

Described as the purpose and criteria of this interim
assessment, in use of the Robot Operating System (ROS)
platform and its featured TurtleBot Burger robot, it was
anticipated that an application would be developed for
enabling the robot to construct a two-dimensional map
of its unknown, surrounding environment, and for
displaying said map graphically, using online or offline
approaches to visualisation.

Figure 1: TurtleBot 3 family model, burger [1].

Mapping could have been addressed by a set of
coordinates, a set of line segments or via an occupancy
grid, which was the targeted method for map generation,
given its vaster and more rewarding complexity for
populating a robot’s environment. Moreover, in
accordance with the visualisation technique nominated
for displaying the graphical output of the map, the ROS
Visualization (RVIZ) tool was applicated for its immediate
availability and support for online map generation, within
a three-dimensional space; this also aided with
interpreting the robot’s orientation and position in real-
time for debugging purposes. In the proceeding passages
of this document, the techniques used to both construct
and display a map of the robot’s environment are
detailed, as well, are relevant evaluations and closer
appeals to the applications implementation,
programmatically.

Map Construction

As already acknowledged, the nominated approach to
mapping the robot’s environment is achieved via
occupancy grid map, which is “used to represent a robot
workspace as a discrete grid” [2] of probabilities, where
“each cell in the occupancy grid has a value representing
the probability of the occupancy of that cell”. Being
“highly accurate” [3] as well as “fast because each grid
cell is updated for each single observation based on the
independent cell assumption”, occupancy grid maps are

assumed “accurate and reliable robotic maps” that are
capable within visualising and assisting with robot to
environment interaction; thus, the nomination of an
occupancy grid for this application was deemed suitable,
especially given that they’re “widely used with range
sensors such as laser scanners”, which the TurtleBot
Burger robot equips [1].

Figure 2: Occupancy grid, representing the map of
multiple spaces combined into one common map [4].

Given their application within the field of probabilistic
mapping, to orchestrate the probability of occupancy of
each cell comprising the grid, recursive Bayesian
inference [5] is applicated to address Markov’s
assumption, which states that the “future is independent
of the past given the present”. Whereby, from the
implementation of recursive Bayesian inference,
provides a “mechanism of computing the new estimate
recursively from the old estimate and the new
measurement”, also renowned as the probability of
interest or occupancy. This form of Bayesian Theorem is
necessary for catering for “dynamical properties” [6] of a
mobile robot’s environment, that cause and effect the
parameters determining the estimation of each cell’s
occupancy to “change with time”; particularly, this is
acknowledged within the field of “autonomous robot
navigation” where objects in an environment are subject
to movement, which demands that their positions within
a given map are updated accordingly. Otherwise, robot to
environment interaction would prevail to be inaccurate
and thereby unreliable in dynamic conditions.

Figure 3: Recursive Bayesian inference (estimation)
mathematical notation [5].

For calculating all, prior, updated, and posterior
probabilities of the Theorem and for resultingly
populating the occupancy grid, recursive Bayesian
inference relies upon the ‘LaserScan’ and ‘Odometry’

topics for formulating a “sensor model” [7], that enables
“the interaction between the occupancy state of each
grid cell and each sensor measurement” to be achieved.
With reference to the ‘LaserScan’ topic, a subscriber is
instantiated to listen to and return all laser sensor data
that is broadcast to the topic; given that the TurtleBot
Burger robot features a “360-degree planar lidar” [1], the
distance measurement to detected objects at every one-
degree angle within the range, can be known and utilised
“to do SLAM and autonomous navigation out of the box”.
Similarly, a subscriber is also instantiated to listen to and
return all odometry data that is broadcast to the
‘Odometry’ topic, where the robot’s position and
orientation can be realised within a local coordinate
space.

Figure 4: TurtleBot 3 family model, Burger, mechanical
composition overview [1].

Collectively, the data associated with either of the topics
mentioned can then be utilised to initially calculate the
detected obstacles position in local coordinate space,
before being retargeted into global coordinate space; this
enables the procedural generation of the robot’s
environment, via occupancy grid map, to be conducted
accurately with reference to scaling and with
correspondence to the visualisation of the environment,
live. Upon obtaining the global position of a detected
obstacle, the cells of the grid that intersect the direction
between the detecting laser sensor and the detected
object can then be probabilistically interpolated by the
sensor model, using the probability sum offered by
recursive Bayesian inference. This in essence populates
and defines the occupancy of obstacles in the grid map.

Fundamental to the sensor model designed for this
application, Bresenham’s line algorithm, an “efficient
method” [8] used for “scan converting a line”, is
applicated for determining “all the intermediate points”
[9] in the occupancy grid that intersect the position of the
robot and detected obstacle; this enables a line to be
drawn that linearly connects the positions. Operationally,
Bresenham’s line algorithm functions within a bounding
box, where each intersecting cell is iteratively discovered
parallel to the intersecting line being generated by
utilising a series of “integer addition, subtractions, and
multiplication operations”, for perturbing along the ‘X’
and ‘Y’ axes of the grid, incrementally. The algorithm is
invoked per laser sensor that detects an obstacle and is
conditioned by the ‘LaserScan’ topic data, in which the
distance reading value returned by the corresponding

sensor will be smaller than the value of infinity (default
value), if and only if an obstacle has been detected within
or at the maximal range supported by the sensor.

Figure 5: Bresenham's line algorithm visualisation, line
generation from point (1, 1) to point (20, 7). Blue cells
present to be the cells of intersection, as accompanied

by orange-coloured circles, representing each cells origin
[11].

Inspired by the basic sonar model [10], recursive Bayesian
inference and Bresenham’s line algorithm are only
invocated for cells that intersect the front-ten-most laser
sensors of the robot, at which the mapping capability
proves to provide higher degrees of fidelity and clarity,
when compared to the utilisation of additional sensors.
Whereby, upon applicating more sensors the apparency
of erroneous data and noise increases in the occupancy
grid calculations, given that the robots orientation
continually adjusts with its angular traversal (wandering)
and stationary turning (avoidance) behaviours, when
being actuated. A ten-degree cone of vision for the robot
caters for map construction relative to the front-most
facing direction of the robot, which is comparatively
more accurate and computationally inexpensive,
however, map generation expectedly becomes
significantly more time consuming.

Figure 6: Cone of vision visualisation, where A represents
the heading of the robot at zero-degrees, B represents
the minimum sensor offset considered for the cone at

five-degrees and C represents the maximum sensor
offset considered for the cone at three-hundred-and-
fifty-four-degrees [12]; beta represents the angular

offset of each side of the cone from the robots heading.

Proceeding from gathering all the “integer coordinates”
[9] of the cells intersecting the robot and obstacles
position, the angular offset to each cell’s vertices can

then be calculated, for determining the minimum and

maximum error in direction, that represents the closest

and furthest vertices from the line that bisects the centre
of both the robot and obstacle cells. This measurement
alongside the difference between the sensors offset and
the direction or line generated between the robot and
obstacles position, can be used within a divisive
operation to obtain a probability of occupancy. Given this
relation, the corresponding cells occupancy can be
updated using recursive Bayesian inference by passing
the resultant value of the operation mentioned; cells
dispersed further away from the line of bisection
resultingly have lower probabilities of being occupied,
this is determined by being more spatially distant from
the obstacle detected.

Figure 7: Probability calculation visualisation,
demonstrating a cell and its vertices that constitute to

the minimum and maximum error in direction, from the
line of bisection.

Software Implementation

For its initialisation, the occupancy grid map is
instantiated as a two-dimensional integer array variable,
which is used to address the ‘X’ and ‘Y’ planes of the
robot’s environment that enables a two-dimensional
map to be constructed and visualised from. Proceeding
from the grid’s instantiation, each of its cells are
initialised to the value of ‘0.5’, representing a neutral and
uncertain probability of occupancy; this is achieved by
implementing a nested ‘for-loop’ within the constructor
method of the ‘Map’ class, which is used to iteratively set
each cells value to ‘0.5’ in the array, via indexing.

Figure 8: Code listing, visualising the nested for-loop for
initialising the occupancy grid map, located within the

constructor method of the Map class.

In support of the appliance of odometry data associated
within the TurtleBot Burger robot, the constructor
method within the ‘Mapper’ class was modified to
facilitate a subscriber object, that subscribes to the

‘Odometry’ topic to access the position and orientation
data of the robot.

Figure 9: Code listing, visualising the instantiation of the
'Odometry' topic subscriber object, located within the

constructor method of the Mapper class.

Accompanying this declaration, a method namely
‘odom_callback()’ was also implemented within the
‘Mapper’ class, as per name, the method functions to call
back the odometry data of the ‘Odometry’ topic, for
which is then stored as a series of globally declared
variables that can be accessed throughout all other
methods comprising the ‘Mapper’ class. Within said
method, the orientation of the robot is stored globally
before being casted from quaternion to Euler standard,
thus enabling the robots heading measure to be
understood relative to yaw. The robot’s position is also
stored globally but the values of the corresponding array
variable are not required to be transformed.

Figure 10: Code listing, visualising the 'odom_callback()'
method declaration, located within the Mapper class.

For the implementation of recursive Bayes Inference, a
separate method namely ‘bayes_theorem()’ was
implemented within the ‘Mapper’ class too, which
enables the environment that the robot is subjected to,
to be represented accurately and efficiently as a series of
probabilities. As acknowledged prior, this is achieved by
utilising the updated and prior probability values
calculated for each cell comprising the grid. Showcased
by the figure below, the method also incorporates a
conditional statement to ensure that the probability of a
cell is only updated if said cell resides within the
boundaries of the map space; this is purposed for the
prevention of error encounters. The probability of each
cell is updated within this method, where it is
consequently invocated in compliance with obstacle
detections and found intersecting cells; the value of each
cell is set to the probability of interest or occupancy
calculated by the arithmetic of the theorem presented
[5].

Figure 11: Code listing, visualising the 'bayes_theorem'
method declaration, located within the Mapper class.

Advancing from the recursive Bayes theorem method,
the ‘scan_callback()’ method located within the
‘Mapper’ class preliminarily contains the functionality
required to translate the positions of detected obstacles
from local to global coordinate spaces, via rotation
matrix and translation operations for occupancy grid
indexing purposes. For the premise of the function, each
sensor comprising the “360-degree planar lidar” [1] is
iterated through via ‘for-loop’, however, as previously
acknowledged only the front-ten-most sensors are
considered for operation, which creates the cone of
vision for the robot discussed prior; this is conditionally
upheld by using an ‘if-statement’ declaration.
Noticeably, if the iterated sensor does not detect an
object the sensors reading value is assigned the
maximum range supported, for assigning probabilities to
the cells that obstacles do not occupy when an obstacle
is not detected; this enables the mapping procedure to
be hastened within its generation, as cell values can be
adjusted regardless of whether an object is detected or
not.

Figure 12: Code listing, visualising the preliminary
section of the 'scan_callback()' method, located within

the Mapper class.

Proceeding from the functionality abovesaid, the
method internally invocates the ‘bayes_theorem()’
method, for both obstacle detections and the position of
the robot, where the values one (occupied) and zero
(not occupied) are passed respectively. Moreover, for
addressing the cells intersecting the position of the
robot and detected obstacle, another method namely
‘find_intersection_cells()’ is invocated; this method is
passed a series of variables local to the ‘scan_callback()’
method, concerning the cartesian coordinates and
indices of the robot and obstacle positions relative to
the occupancy grid, as well as the offset calculated for
the iterated sensor, from the heading of the robot.

Figure 13: Code listing, visualising the secondary section
of the 'scan_callback()' method, located within the

Mapper class.

In continued mention of the ‘find_intersection_cells()’
method, the function initially invocates Bresenham’s line
algorithm for determining the cells in the grid that
intersect the positions of the robot and the detected
obstacle, relative to the facing direction of the iterated
laser sensor; this is achieved via functional invocation,
where the ‘bresenham_line_algorithm()’ method is
invocated.

Figure 14: Code listing, visualising the preliminary
section of the 'find_intersection_cells()' method, located

within the Mapper class.

Upon the intersecting cells being computed and returned
by the method as an integer array variable, each cell in
said array is iterated through via indexing and a ‘for-loop’
for performing a series of operations relevant to the
calculation of the updated probability, that is later passed
to the ‘bayes_theorem()’ method. Initially, the direction
(vector) from the robot to the iterated cell in the grid is
calculated via arctangent operation and is used to
condition and determine whether the detecting sensor is
angularly offset from the direction calculated. Given the
scenario that the sensor presents no offset from the
calculated direction, the probability passed to the
‘bayes_theorem()’ method is decided as zero, inferring
no occupancy; this is sensible to assume, provided that
no obstacle can be detected between the corresponding
sensor of the robot and the obstacle already detected.

Figure 15: Code listing, visualising the secondary section
of the 'find_intersection_cells()' method, located within

the Mapper class.

Alternatively, if the sensor presents an offset from the
calculated direction, the direction from the robot to each
of the iterated cell’s vertices is then calculated, also via
arctangent operation, for determining the maximum and
minimum error in direction from the bisecting line, as
discussed in previous sections. The error (difference)
between the sensors angular offset and the direction
from the robot to the iterated cell is then calculated also,
simply by using a subtractive operation. Dependent on
the sign of the error calculated, the direction error is
divided by the maximum (if positive) or minimum (if
negative) error calculated from either of the cell’s
vertices, in which provides a probability that depreciates
with the furthest point of a cell becoming of increasing
distance from the bisecting line.

Figure 16: Code listing, visualising the tertiary section of
the 'find_intersection_cells()' method, located within the

Mapper class.

Lastly, as already mentioned and integrated as part of the
‘find_intersection_cells()’ method, the
‘bresenham_line_algorithm()’ method located within the
‘Mapper’ class purposes to incrementally establish all
cells intersecting the positions of the robot and the
detected obstacle. This is achieved by performing a series
of perturbation cycles along the ‘X’ and ‘Y’ axes of the
grid, to gradually displace nearer to the position of the
obstacle, relative to the starting point of the robot whilst
marginalising the error from the bisecting line.

Figure 17: Code listing, visualising the preliminary
section of the 'bresenham_line_algorithm()' method,

located within the Mapper class.

Figure 18: Code listing, visualising the secondary section
of the 'bresenham_line_algorithm()' method, located

within the Mapper class.

Figure 19: Code listing, visualising the tertiary section of
the 'bresenham_line_algorithm()' method, located

within the Mapper class.

Evaluation

Throughout the development of the intended
application, the occupancy grid map size, resolution, and
origin was manipulated to suffice for more accurate
depictions of the robot’s environment; each parameters
value was considered relative to the computational
performance of the software platform itself, as extended
resolutions and grid sizes were found to dramatically slow
the simulation and the resultant pace of map generation.
Moreover, through deferring from the original parameter
values, the map in its submittable state is seen to be
represented with a viable orientation, scale, and
transformation.

Additionally, as speculated for the cone of vision or range
of sensors considered for detecting obstacles, originally
the cone of vision was vast with sixty-degrees of
surveillance, which was well-suited to a time efficient
approach to environment mapping but was also more
prone to noisy occupancy calculations. Given this
relation, the robots field of view (FOV) was marginalised
over time, from the initial sixty-degrees of surveillance to
the resultant ten-degrees. In effect of reducing the FOV
of the robots sensing capability, the depiction of the
robot’s environment is noticeably sharper, where less
noise is present within each of the representations,
however, map generation is consequently more time
consuming.

Figure 20: Occupancy grid map visualisation when the
robot’s cone of vision explores a sixty-degree angle of

surveillance.

Figure 21: Occupancy grid map visualisation when the
robot’s cone of vision explores a thirty-degree angle of

surveillance.

Figure 22: Occupancy grid map visualisation when the
robot’s cone of vision explores a twenty-degree angle of

surveillance.

Figure 23: Occupancy grid map visualisation when the
robot’s cone of vision explores a ten-degree angle of

surveillance.

Conclusions

In conclusion of the environment mapping task instructed
for its undertaking, it is inevitable that a two-dimensional
illustration of the robot’s three-dimensional
surroundings is feasible, through the presented
implementation of an occupancy grid map which employs
recursive Bayesian inference, to achieve an accurate and
efficient approximation of an unknown environment. As
is noticed by the graphical output of the maps generated,
occupancy grids are well-suited to producing clear and
structurally visible depictions of environments, for which
the final configuration submitted presents minimalistic
noise quantities.

Now acknowledging the projects completed state,
throughout the development of the application, my
awareness of the libraries and facilities available within
the Python programming language has both been
reinforced and advanced. Similarly, as previously
inexperienced within the ROS platform and more
specifically within the ‘TheConstructSim’ platform, I have
inevitably become competent in navigating, operating
and applicating the tools available in the software for the
project’s completion; this knowledge will undoubtedly
prevail useful for upcoming assessments and future
professional practises.

Given that more time were to be available for the
projects working, I believe that abstracting the
functionality out into separate classes and files would
prove to be increasingly more efficient than the
submittable state provided; this would provide support
for higher fidelities of resolution also, whilst reducing
performance degradations. Also, I would like to have
alternated the way in which each cells probability is
calculated within he grid, for reducing computational
complexity and for adhering to generic workings and
applications of the Bayesian Theorem.

References

[1] Ackerman, E. and Guizzo, E. (2017) Hands-on with
TurtleBot 3, a Powerful Little Robot for Learning ROS.
[Weblog] IEEE Spectrum. 2nd May. Available from:
https://spectrum.ieee.org/automaton/robotics/robotics
-hardware/review-robotis-turtlebot-3 [Accessed:
07/04/21].

[2] MathWorks (2021) Occupancy Grids. [Online]
MathWorks. Available from:
https://uk.mathworks.com/help/robotics/ug/occupancy
-grids.html [Accessed: 07/04/21].

[3] Kim, S. and Kim, J. (2014) Recursive Bayesian Updates
for Occupancy Mapping and Surface Reconstruction. In:
Proceedings of Australasian Conference on Robotics and
Automation. The University of Melbourne, Melbourne,
Australia, December 2014. Australia: IEEE, pp. 1-8.

[4] Sundram, J. and Nguyen, H.D.V. and Soh, G.S. and
Wood, K.L. (2018) Development of a Miniature Robot for
Multi-robot Occupancy Grid Mapping. In: IEEE
International Conference on Advanced Robotics and
Mechatronics (ICARM). Singapore, July 2018. Singapore:
IEEE, pp. 414-419.

[5] Li, H. (2014) A Brief Tutorial on Recursive Estimation
with Examples from Intelligent Vehicle Applications (Part
I): Basic Spirit and Utilities. [Online]. Available from:
https://hal.archives-ouvertes.fr/hal-
01015148/document [Accessed: 07/04/21].

[6] Bergman, N. (1999) Recursive Bayesian Estimation
Navigation and Tracking Applications. [Online]. Available
from:
http://www.control.isy.liu.se/research/reports/Ph.D.The
sis/PhD579.pdf [Accessed: 07/04/21].

[7] Robbiano, C. and Chong, E.K.P. and Sadjadi-A.M.R.
and Scharf, L.L. and Pezeshki, A. (2020) Bayesian
Learning of Occupancy Grids. IEEE Transactions on
Intelligent Transportation Systems. [Online]. Available
from:
https://ieeexplore.ieee.org/document/9190014/authors
#authors [Accessed: 07/04/21].

[8] Java Point (2018) Bresenham's Line Algorithm.
[Online] Java Point. Available from:
https://www.javatpoint.com/computer-graphics-
bresenhams-line-algorithm [Accessed: 07/04/21].

[9] GeeksforGeeks (2021) Bresenham’s Line Generation
Algorithm. [Online] GeeksforGeeks. Available from:
https://www.geeksforgeeks.org/bresenhams-line-
generation-algorithm/ [Accessed: 07/04/21].

[10] Ivanjko, E. and Petrovic, I. and Brezak, M. (2009)
Experimental Comparison of Sonar Based Occupancy
Grid Mapping Methods. [Online]. Available from:
https://www.researchgate.net/publication/293076408_
Experimental_Comparison_of_Sonar_Based_Occupancy
_Grid_Mapping_Methods [Accessed: 07/04/21].

[11] Mbedded.ninja (2019) Bresenham's Line Algorithm.
[Weblog] mbedded.ninja. 3rd January. Available from:
https://blog.mbedded.ninja/programming/algorithms-
and-data-structures/bresenhams-line-algorithm/
[Accessed: 07/04/21].

[12] Torres, C.R. and Abe, J.M. and Torres-L.G. Filho,
J.I.D.S. (2011) Autonomous mobile robot Emmy III.
[Online]. Available from:
https://www.researchgate.net/publication/221918582_
Autonomous_mobile_robot_Emmy_III [Accessed:
07/04/21].

