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Introduction 
 
Described as the purpose and criteria of this interim 
assessment, in use of the Robot Operating System (ROS) 
platform and its featured TurtleBot Burger robot, it was 
anticipated that an application would be developed for 
enabling the robot to construct a two-dimensional map 
of its unknown, surrounding environment, and for 
displaying said map graphically, using online or offline 
approaches to visualisation.  

 

 
 

Figure 1: TurtleBot 3 family model, burger [1].  

 
Mapping could have been addressed by a set of 
coordinates, a set of line segments or via an occupancy 
grid, which was the targeted method for map generation, 
given its vaster and more rewarding complexity for 
populating a robot’s environment. Moreover, in 
accordance with the visualisation technique nominated 
for displaying the graphical output of the map, the ROS 
Visualization (RVIZ) tool was applicated for its immediate 
availability and support for online map generation, within 
a three-dimensional space; this also aided with 
interpreting the robot’s orientation and position in real-
time for debugging purposes. In the proceeding passages 
of this document, the techniques used to both construct 
and display a map of the robot’s environment are 
detailed, as well, are relevant evaluations and closer 
appeals to the applications implementation, 
programmatically. 

 

Map Construction 
 
As already acknowledged, the nominated approach to 
mapping the robot’s environment is achieved via 
occupancy grid map, which is “used to represent a robot 
workspace as a discrete grid” [2] of probabilities, where 
“each cell in the occupancy grid has a value representing 
the probability of the occupancy of that cell”. Being 
“highly accurate” [3] as well as “fast because each grid 
cell is updated for each single observation based on the 
independent cell assumption”, occupancy grid maps are 

assumed “accurate and reliable robotic maps” that are 
capable within visualising and assisting with robot to 
environment interaction; thus, the nomination of an 
occupancy grid for this application was deemed suitable, 
especially given that they’re “widely used with range 
sensors such as laser scanners”, which the TurtleBot 
Burger robot equips [1].  

 

 
 

Figure 2: Occupancy grid, representing the map of 
multiple spaces combined into one common map [4]. 

 
Given their application within the field of probabilistic 
mapping, to orchestrate the probability of occupancy of 
each cell comprising the grid, recursive Bayesian 
inference [5] is applicated to address Markov’s 
assumption, which states that the “future is independent 
of the past given the present”. Whereby, from the 
implementation of recursive Bayesian inference, 
provides a “mechanism of computing the new estimate 
recursively from the old estimate and the new 
measurement”, also renowned as the probability of 
interest or occupancy. This form of Bayesian Theorem is 
necessary for catering for “dynamical properties” [6] of a 
mobile robot’s environment, that cause and effect the 
parameters determining the estimation of each cell’s 
occupancy to “change with time”; particularly, this is 
acknowledged within the field of “autonomous robot 
navigation” where objects in an environment are subject 
to movement, which demands that their positions within 
a given map are updated accordingly. Otherwise, robot to 
environment interaction would prevail to be inaccurate 
and thereby unreliable in dynamic conditions. 

 

 
 

Figure 3: Recursive Bayesian inference (estimation) 
mathematical notation [5]. 

 
For calculating all, prior, updated, and posterior 
probabilities of the Theorem and for resultingly 
populating the occupancy grid, recursive Bayesian 
inference relies upon the ‘LaserScan’ and ‘Odometry’ 



topics for formulating a “sensor model” [7], that enables 
“the interaction between the occupancy state of each 
grid cell and each sensor measurement” to be achieved. 
With reference to the ‘LaserScan’ topic, a subscriber is 
instantiated to listen to and return all laser sensor data 
that is broadcast to the topic; given that the TurtleBot 
Burger robot features a “360-degree planar lidar” [1], the 
distance measurement to detected objects at every one-
degree angle within the range, can be known and utilised 
“to do SLAM and autonomous navigation out of the box”. 
Similarly, a subscriber is also instantiated to listen to and 
return all odometry data that is broadcast to the 
‘Odometry’ topic, where the robot’s position and 
orientation can be realised within a local coordinate 
space.  

 

 
 

Figure 4: TurtleBot 3 family model, Burger, mechanical 
composition overview [1]. 

 
Collectively, the data associated with either of the topics 
mentioned can then be utilised to initially calculate the 
detected obstacles position in local coordinate space, 
before being retargeted into global coordinate space; this 
enables the procedural generation of the robot’s 
environment, via occupancy grid map, to be conducted 
accurately with reference to scaling and with 
correspondence to the visualisation of the environment, 
live. Upon obtaining the global position of a detected 
obstacle, the cells of the grid that intersect the direction 
between the detecting laser sensor and the detected 
object can then be probabilistically interpolated by the 
sensor model, using the probability sum offered by 
recursive Bayesian inference. This in essence populates 
and defines the occupancy of obstacles in the grid map. 
 
Fundamental to the sensor model designed for this 
application, Bresenham’s line algorithm, an “efficient 
method” [8] used for “scan converting a line”, is 
applicated for determining “all the intermediate points” 
[9] in the occupancy grid that intersect the position of the 
robot and detected obstacle; this enables a line to be 
drawn that linearly connects the positions. Operationally, 
Bresenham’s line algorithm functions within a bounding 
box, where each intersecting cell is iteratively discovered 
parallel to the intersecting line being generated by 
utilising a series of “integer addition, subtractions, and 
multiplication operations”, for perturbing along the ‘X’ 
and ‘Y’ axes of the grid, incrementally. The algorithm is 
invoked per laser sensor that detects an obstacle and is 
conditioned by the ‘LaserScan’ topic data, in which the 
distance reading value returned by the corresponding 

sensor will be smaller than the value of infinity (default 
value), if and only if an obstacle has been detected within 
or at the maximal range supported by the sensor. 

 

 
 

Figure 5: Bresenham's line algorithm visualisation, line 
generation from point (1, 1) to point (20, 7). Blue cells 
present to be the cells of intersection, as accompanied 

by orange-coloured circles, representing each cells origin 
[11]. 

 
Inspired by the basic sonar model [10], recursive Bayesian 
inference and Bresenham’s line algorithm are only 
invocated for cells that intersect the front-ten-most laser 
sensors of the robot, at which the mapping capability 
proves to provide higher degrees of fidelity and clarity, 
when compared to the utilisation of additional sensors. 
Whereby, upon applicating more sensors the apparency 
of erroneous data and noise increases in the occupancy 
grid calculations, given that the robots orientation 
continually adjusts with its angular traversal (wandering) 
and stationary turning (avoidance) behaviours, when 
being actuated. A ten-degree cone of vision for the robot 
caters for map construction relative to the front-most 
facing direction of the robot, which is comparatively 
more accurate and computationally inexpensive, 
however, map generation expectedly becomes 
significantly more time consuming.   

 

 
 

Figure 6: Cone of vision visualisation, where A represents 
the heading of the robot at zero-degrees, B represents 
the minimum sensor offset considered for the cone at 

five-degrees and C represents the maximum sensor 
offset considered for the cone at three-hundred-and-
fifty-four-degrees [12]; beta represents the angular 

offset of each side of the cone from the robots heading. 

 
Proceeding from gathering all the “integer coordinates” 
[9] of the cells intersecting the robot and obstacles 
position, the angular offset to each cell’s vertices can 

then be calculated, for determining the minimum and 

maximum error in direction, that represents the closest 



and furthest vertices from the line that bisects the centre 
of both the robot and obstacle cells. This measurement 
alongside the difference between the sensors offset and 
the direction or line generated between the robot and 
obstacles position, can be used within a divisive 
operation to obtain a probability of occupancy. Given this 
relation, the corresponding cells occupancy can be 
updated using recursive Bayesian inference by passing 
the resultant value of the operation mentioned; cells 
dispersed further away from the line of bisection 
resultingly have lower probabilities of being occupied, 
this is determined by being more spatially distant from 
the obstacle detected.  

 

 
 

Figure 7: Probability calculation visualisation, 
demonstrating a cell and its vertices that constitute to 

the minimum and maximum error in direction, from the 
line of bisection. 

 

Software Implementation 
 
For its initialisation, the occupancy grid map is 
instantiated as a two-dimensional integer array variable, 
which is used to address the ‘X’ and ‘Y’ planes of the 
robot’s environment that enables a two-dimensional 
map to be constructed and visualised from. Proceeding 
from the grid’s instantiation, each of its cells are 
initialised to the value of ‘0.5’, representing a neutral and 
uncertain probability of occupancy; this is achieved by 
implementing a nested ‘for-loop’ within the constructor 
method of the ‘Map’ class, which is used to iteratively set 
each cells value to ‘0.5’ in the array, via indexing.  

 

 
 

Figure 8: Code listing, visualising the nested for-loop for 
initialising the occupancy grid map, located within the 

constructor method of the Map class. 

 
In support of the appliance of odometry data associated 
within the TurtleBot Burger robot, the constructor 
method within the ‘Mapper’ class was modified to 
facilitate a subscriber object, that subscribes to the 

‘Odometry’ topic to access the position and orientation 
data of the robot.  

 

 
 

Figure 9: Code listing, visualising the instantiation of the 
'Odometry' topic subscriber object, located within the 

constructor method of the Mapper class. 
 
Accompanying this declaration, a method namely 
‘odom_callback()’ was also implemented within the 
‘Mapper’ class, as per name, the method functions to call 
back the odometry data of the ‘Odometry’ topic, for 
which is then stored as a series of globally declared 
variables that can be accessed throughout all other 
methods comprising the ‘Mapper’ class. Within said 
method, the orientation of the robot is stored globally 
before being casted from quaternion to Euler standard, 
thus enabling the robots heading measure to be 
understood relative to yaw. The robot’s position is also 
stored globally but the values of the corresponding array 
variable are not required to be transformed. 

 

 
 

Figure 10: Code listing, visualising the 'odom_callback()' 
method declaration, located within the Mapper class. 

 
For the implementation of recursive Bayes Inference, a 
separate method namely ‘bayes_theorem()’ was 
implemented within the ‘Mapper’ class too, which 
enables the environment that the robot is subjected to, 
to be represented accurately and efficiently as a series of 
probabilities. As acknowledged prior, this is achieved by 
utilising the updated and prior probability values 
calculated for each cell comprising the grid. Showcased 
by the figure below, the method also incorporates a 
conditional statement to ensure that the probability of a 
cell is only updated if said cell resides within the 
boundaries of the map space; this is purposed for the 
prevention of error encounters. The probability of each 
cell is updated within this method, where it is 
consequently invocated in compliance with obstacle 
detections and found intersecting cells; the value of each 
cell is set to the probability of interest or occupancy 
calculated by the arithmetic of the theorem presented 
[5]. 

 

 
 



Figure 11: Code listing, visualising the 'bayes_theorem' 
method declaration, located within the Mapper class. 
 
Advancing from the recursive Bayes theorem method, 
the ‘scan_callback()’ method located within the 
‘Mapper’ class preliminarily contains the functionality 
required to translate the positions of detected obstacles 
from local to global coordinate spaces, via rotation 
matrix and translation operations for occupancy grid 
indexing purposes. For the premise of the function, each 
sensor comprising the “360-degree planar lidar” [1] is 
iterated through via ‘for-loop’, however, as previously 
acknowledged only the front-ten-most sensors are 
considered for operation, which creates the cone of 
vision for the robot discussed prior; this is conditionally 
upheld by using an ‘if-statement’ declaration. 
Noticeably, if the iterated sensor does not detect an 
object the sensors reading value is assigned the 
maximum range supported, for assigning probabilities to 
the cells that obstacles do not occupy when an obstacle 
is not detected; this enables the mapping procedure to 
be hastened within its generation, as cell values can be 
adjusted regardless of whether an object is detected or 
not. 

 

 
 

Figure 12: Code listing, visualising the preliminary 
section of the 'scan_callback()' method, located within 

the Mapper class. 
 
Proceeding from the functionality abovesaid, the 
method internally invocates the ‘bayes_theorem()’ 
method, for both obstacle detections and the position of 
the robot, where the values one (occupied) and zero 
(not occupied) are passed respectively. Moreover, for 
addressing the cells intersecting the position of the 
robot and detected obstacle, another method namely 
‘find_intersection_cells()’ is invocated; this method is 
passed a series of variables local to the ‘scan_callback()’ 
method, concerning the cartesian coordinates and 
indices of the robot and obstacle positions relative to 
the occupancy grid, as well as the offset calculated for 
the iterated sensor, from the heading of the robot. 

 

 
 

Figure 13: Code listing, visualising the secondary section 
of the 'scan_callback()' method, located within the 

Mapper class. 
 
In continued mention of the ‘find_intersection_cells()’ 
method, the function initially invocates Bresenham’s line 
algorithm for determining the cells in the grid that 
intersect the positions of the robot and the detected 
obstacle, relative to the facing direction of the iterated 
laser sensor; this is achieved via functional invocation, 
where the ‘bresenham_line_algorithm()’ method is 
invocated.  

 

 
 

Figure 14: Code listing, visualising the preliminary 
section of the 'find_intersection_cells()' method, located 

within the Mapper class. 
 
Upon the intersecting cells being computed and returned 
by the method as an integer array variable, each cell in 
said array is iterated through via indexing and a ‘for-loop’ 
for performing a series of operations relevant to the 
calculation of the updated probability, that is later passed 
to the ‘bayes_theorem()’ method. Initially, the direction 
(vector) from the robot to the iterated cell in the grid is 
calculated via arctangent operation and is used to 
condition and determine whether the detecting sensor is 
angularly offset from the direction calculated. Given the 
scenario that the sensor presents no offset from the 
calculated direction, the probability passed to the 
‘bayes_theorem()’ method is decided as zero, inferring 
no occupancy; this is sensible to assume, provided that 
no obstacle can be detected between the corresponding 
sensor of the robot and the obstacle already detected.  

 

 
 

Figure 15: Code listing, visualising the secondary section 
of the 'find_intersection_cells()' method, located within 

the Mapper class. 
 



Alternatively, if the sensor presents an offset from the 
calculated direction, the direction from the robot to each 
of the iterated cell’s vertices is then calculated, also via 
arctangent operation, for determining the maximum and 
minimum error in direction from the bisecting line, as 
discussed in previous sections. The error (difference) 
between the sensors angular offset and the direction 
from the robot to the iterated cell is then calculated also, 
simply by using a subtractive operation. Dependent on 
the sign of the error calculated, the direction error is 
divided by the maximum (if positive) or minimum (if 
negative) error calculated from either of the cell’s 
vertices, in which provides a probability that depreciates 
with the furthest point of a cell becoming of increasing 
distance from the bisecting line.  

 

 
 

Figure 16: Code listing, visualising the tertiary section of 
the 'find_intersection_cells()' method, located within the 

Mapper class. 
 
Lastly, as already mentioned and integrated as part of the 
‘find_intersection_cells()’ method, the 
‘bresenham_line_algorithm()’ method located within the 
‘Mapper’ class purposes to incrementally establish all 
cells intersecting the positions of the robot and the 
detected obstacle. This is achieved by performing a series 
of perturbation cycles along the ‘X’ and ‘Y’ axes of the 
grid, to gradually displace nearer to the position of the 
obstacle, relative to the starting point of the robot whilst 
marginalising the error from the bisecting line. 

 

 
 

Figure 17: Code listing, visualising the preliminary 
section of the 'bresenham_line_algorithm()' method, 

located within the Mapper class. 

 

 
 

Figure 18: Code listing, visualising the secondary section 
of the 'bresenham_line_algorithm()' method, located 

within the Mapper class. 

 

 
 

Figure 19: Code listing, visualising the tertiary section of 
the 'bresenham_line_algorithm()' method, located 

within the Mapper class. 

 

Evaluation 
 
Throughout the development of the intended 
application, the occupancy grid map size, resolution, and 
origin was manipulated to suffice for more accurate 
depictions of the robot’s environment; each parameters 
value was considered relative to the computational 
performance of the software platform itself, as extended 
resolutions and grid sizes were found to dramatically slow 
the simulation and the resultant pace of map generation. 
Moreover, through deferring from the original parameter 
values, the map in its submittable state is seen to be 
represented with a viable orientation, scale, and 
transformation. 
 
Additionally, as speculated for the cone of vision or range 
of sensors considered for detecting obstacles, originally 
the cone of vision was vast with sixty-degrees of 
surveillance, which was well-suited to a time efficient 
approach to environment mapping but was also more 
prone to noisy occupancy calculations. Given this 
relation, the robots field of view (FOV) was marginalised 
over time, from the initial sixty-degrees of surveillance to 
the resultant ten-degrees. In effect of reducing the FOV 
of the robots sensing capability, the depiction of the 
robot’s environment is noticeably sharper, where less 
noise is present within each of the representations, 
however, map generation is consequently more time 
consuming.   
 



 
 

Figure 20: Occupancy grid map visualisation when the 
robot’s cone of vision explores a sixty-degree angle of 

surveillance. 
 

 
 

Figure 21: Occupancy grid map visualisation when the 
robot’s cone of vision explores a thirty-degree angle of 

surveillance. 

 

 
 

Figure 22: Occupancy grid map visualisation when the 
robot’s cone of vision explores a twenty-degree angle of 

surveillance. 
 

 
 

Figure 23: Occupancy grid map visualisation when the 
robot’s cone of vision explores a ten-degree angle of 

surveillance. 
 

Conclusions 
 
In conclusion of the environment mapping task instructed 
for its undertaking, it is inevitable that a two-dimensional 
illustration of the robot’s three-dimensional 
surroundings is feasible, through the presented 
implementation of an occupancy grid map which employs 
recursive Bayesian inference, to achieve an accurate and 
efficient approximation of an unknown environment. As 
is noticed by the graphical output of the maps generated, 
occupancy grids are well-suited to producing clear and 
structurally visible depictions of environments, for which 
the final configuration submitted presents minimalistic 
noise quantities. 
 
Now acknowledging the projects completed state, 
throughout the development of the application, my 
awareness of the libraries and facilities available within 
the Python programming language has both been 
reinforced and advanced. Similarly, as previously 
inexperienced within the ROS platform and more 
specifically within the ‘TheConstructSim’ platform, I have 
inevitably become competent in navigating, operating 
and applicating the tools available in the software for the 
project’s completion; this knowledge will undoubtedly 
prevail useful for upcoming assessments and future 
professional practises. 
 
Given that more time were to be available for the 
projects working, I believe that abstracting the 
functionality out into separate classes and files would 
prove to be increasingly more efficient than the 
submittable state provided; this would provide support 
for higher fidelities of resolution also, whilst reducing 
performance degradations. Also, I would like to have 
alternated the way in which each cells probability is 
calculated within he grid, for reducing computational 
complexity and for adhering to generic workings and 
applications of the Bayesian Theorem. 
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