

CTEC 3451
Development Project

Under Lock and Key
Three-dimensional puzzle game

Supervisor
Dr. Jethro Shell

jethros@dmu.ac.uk
0116 2078520

Authored by

Adam Leonard Hubble
P17175774

P17175774@my365.dmu.ac.uk

Contents

Figures 4

Tables 7

Introduction 8

Background 8

Motivation 10

Aims and Objectives 11

Body 12

Project Specification 12

Functional Requirements 12

Player Interaction 12

Camera Application 14

User Interface 16

System Design 18

System Architecture 18

User Interfaces 20

System Implementation 23

Software Development 23

Loading Screen 23

Base Scene 25

Second Puzzle Room 28

First Puzzle Room 34

Development Adherence 36

Problem Resolution 38

Testing Regime 42

Overview 42

Unit Testing 42

Black-box Testing 43

Performance Profiling 43

Project Maintenance 44

Critical Evaluation 45

Project Evaluation 45

System Features 45

Development Evaluation 46

Development Approach 46

Academic Advancement 46

Tool Evaluation 47

Development Support 47

Acknowledgements 47

Bibliography 48

Appendices 58

Literature Review 58

Introduction 58

Reviewing literature 59

References 63

Software functional requirements 65

Game overview 65

Basic functional requirements of the game 65

Functional requirements of game scenes 65

Functional requirements for the player of the game 66

Software use cases 66

Methodology of testing 68

Test objectives 68

Test strategy 68

Blackbox testing 69

Purpose of Blackbox testing 69

Blackbox testing cases 69

Unit testing 70

Purpose of unit testing 70

Unit testing cases 71

Performance profiling 71

Purpose of performance profiling 71

Performance profile test cases 72

System overview 72

System Design Document (SDD) 72

SDD overview 72

System design 72

Design assumptions 73

Design constraints 73

System architecture 74

User Interface 74

Figures

Figure 1: Puzzle Room Two, low-key lit, compact, and room-like environment 8
Figure 2: The Room Three, low-key lit, compact, and room-like environment [3] 8
Figure 3: Puzzle room two, music box item and music box stand modelled similarly 9
Figure 4: The Room, item obtained modelled similarly to puzzle object [4] 9
Figure 5: Puzzle room two, music box disc needle alignment, pinch rotate left gesture interaction 9
Figure 6: Forever Lost, align the indicators, touch, and drag gesture interaction [8] 9
Figure 7: The House of Da Vinci, multidirectional swipe gesture interaction, passage the flower
through the tiles [7] 9
Figure 8: Call of Duty: Mobile, first-person shooter, multiplayer game view [12] 10
Figure 9: PUBG Mobile, first-person shooter, battle royale combat view [11] 10
Figure 10: Faraway 3: Artic Escape, area enclosed environment and gesture puzzle interaction [16] 11
Figure 11: Adventure Escape: Asylum, room-like environment and gesture endorsed puzzle
interaction [15] 11
Figure 12: Jigsaw, puzzle room aesthetic [18] 11
Figure 13: Escape Room, puzzle room aesthetic [19] 11
Figure 14: Ray casting, ray cast from the first-person camera frustum towards safe door object, safe
door object equips collider component 13
Figure 15: Puzzle room two, piano puzzle, inside piano key interaction view 13
Figure 16: Unity game engine inspector panel, piano key C object tag assignment. Available piano
key object tags listed 13
Figure 17: Puzzle room two, table piece, hanging light animates and brightens the area of the scene,
upon the player being close by and looking at the table globe directly 14
Figure 18: Puzzle room two, music box picture, narrative development scene. Music box picture
animates upon the player being close by and looking at the picture canvas directly 14
Figure 19: Puzzle room two, music box puzzle interaction. Music box latch key rotate, latch key
position translation, disc spindle rotate, camera position translation inwards, camera position
translation outwards; touch and drag, swipe right, pinch, and rotate left, pinch inwards, pinch
outwards. Captioned left to right 14
Figure 20: Slender: The Eight Pages, first-person perspective of an indoor corridor environment [21]
 15
Figure 21: Puzzle room one, telephone puzzle, audio device Morse code translation, Morse code
book object interaction view 15
Figure 22: Puzzle room two, music box puzzle, music box latch key object animation 15
Figure 23: Puzzle room two, table piece puzzle, table globe object interaction view, table piece
puzzle iteration one animation 15
Figure 24: Mad Experiments: Escape Room, first-person camera perspective fixated to the player-
controlled character, roam-focused interaction [23] 16
Figure 25: realMyst, game world cinematograph captivation, UI elements not visible to player, touch
fields used to control player traversal through the world [26] 17
Figure 26: The Room Two, game paused state, pause menu interface (captured from the game
directly) 17
Figure 27: Model-view-controller (MVC) design pattern [29] 18
Figure 28: Puzzle room two, ‘PianoPlayableKeys’ object, numerous audio sources seen attached as
components within Unity’s inspector panel 19

Figure 29: Puzzle room two, carousel music box object, animation timeline within the Unity engine,
showcasing the presence of animation events. Method being invoked by the animation event is
shown within the inspector panel, and within the animation timeline as a widget 19
Figure 30: ‘PuzzleRoomTwo’ class, conditional use of enumeration for indexing Boolean array
members 20
Figure 31: Loading screen scene, showcasing the loading screen menu user interface design 21
Figure 32: Pause menu user interface, displaying the resume, toggle subtitle and exit application
buttons 22
Figure 33: In-game user interface, showcasing the joystick, jump, flashlight toggle, camera
perspective alternate and pause menu buttons 23
Figure 34: Adobe Photoshop CC 2017, displaying the software’s interface and the UI elements
created for depicting the loading screen 24
Figure 35: 'WindowGUI', 'ButtonController' and 'SceneController' classes, representing the
functionality of the methods directly invoked by the interactable buttons 24
Figure 36: 'WindowGUI' class, displaying the methods invoked by the disclaimer window. The
disclaimer window GUI is shown in top-right region of figure 25
Figure 37: Unity's animator interface, showcasing the relations between the silhouette objects
animation states. Animation timeline is seen in the bottom region of the applications interface 25
Figure 38: First level scene, displaying the decagonal arrangement of door and wall objects. Game
object hierarchy is also demonstrated 26
Figure 39: Base scene, exemplify empty game objects with collider attachments, configured as
triggers, for the use of scene transitioning. Illustrate box collider component attached to door object,
for preventing player object from transitioning to other game scenes. ‘PlayerController’ class
implementation of the ‘OnTriggerEnter’ method, shown in the bottom region of the figure 27
Figure 40: Pause menu and in-game UI designs, displaying UI canvas object hierarchy in relation to its
UI elements. Aesthetic design process of UI elements within Adobe Photoshop is shown. Script
passing to UI button elements is illustrated also. 28
Figure 41: Puzzle room two, showcasing the room-like environment, constructed from a series of
cube and plane objects. Collider components are visualised by the green borders of geometry and
within the inspector panel, alongside the material equipped by a wall object 29
Figure 42: Puzzle room two, hanging light object above the picture canvas object, safe object, and
the safe interaction view perspective (captioned left to right) 30
Figure 43: Puzzle room two, table piece puzzle, showcasing the first puzzle iteration, animation
sequence 31
Figure 44: Puzzle room two, table piece puzzle, displaying table globe interaction view and
arrangement for the country marker objects (material-lit) 31
Figure 45: Puzzle room two, music box puzzle, showcasing the picture frame, carousel music box and
wardrobe cinematic sequences, alongside the collection of music box items that can be obtained
(captioned left to right) 32
Figure 46: Puzzle room two, piano puzzle, showcasing the book, bookshelf, bookstand, and piano
object interaction developments 33
Figure 47: Puzzle room one, room layout, featuring the walls, planes, door, and dark area
prefabricated objects of the scene 34
Figure 48: Puzzle room one, showcasing the appearances of number segments, through object
interaction views and audio cue invocation, which is assisted by subtitles when enabled. Face mask,
audio device and clipboard object touch-based interactions (captioned left to right) 35

Figure 49: Puzzle room one, demonstrating the telephone object interaction state, as well as the
series of engagements for offering players information. Hanging light animation, Morse code
translation and glass cabinet window animation (captioned left to right) 36
Figure 50: Gantt chart, displaying the projects preliminary expectations of time investment for the
academic year 37
Figure 51: Gantt chart, showcasing the time invested into the project’s development for the entire
span of the academic year, updated 37
Figure 52: Puzzle room two, low-poly bookshelf captured within the active camera’s frustum, objects
vertex count is show within Unity's statistics panel 38
Figure 53: Autodesk Maya, carousel music box object, showcasing the standard geometry count
within the objects mesh 39
Figure 54: Autodesk Maya, carousel music box object, displaying the reduced geometry count within
the objects mesh. The mesh geometry reduction can be seen within the mesh reduction tools
interface 39
Figure 55: Puzzle room two, visualizing occlusion culling, unoccupied spotlight areas of the scene
represent the areas where geometry has been culled. Occlusion culling configuration is seen within
Unity's occlusion culling panel 39
Figure 56: Puzzle room two, displaying the number of draw calls saved by statically batching
stationary objects, as seen within the statistics panel. Assigning game objects for static batching is
illustrated within the inspector panel 40
Figure 57: ‘PuzzleRoomTwo’ class, setting 'activeAudioPaused' to its default state when entering the
carousel music box cylinder object view 41
Figure 58: 'PuzzleRoomOne' class, illustrating the functionality presented for controlling camera
movement within the 'EnterTelephoneView' method 42
Figure 59: 'PlayerController' class, showcasing code segmentation through the application of regions.
Comments are also shown each line of implementation, these are led by the '//' parenthesis 44
Figure 61: 'Puzzle' class, demonstrating the virtual method declarations, one of which functions are
overloaded. ‘Puzzle’ class is abstract, an interface for the puzzle room classes 44
Figure 60: 'PuzzleRoomTwo' class, illustrating the virtual methods being overridden as
implementations of the interface. 'PuzzleRoomTwo' inherits from 'Puzzle' class 44
Figure 62: ‘Puzzle’ abstract class, contain the virtual methods to be implemented within the puzzle
room classes, display the inheritance relation between the puzzle room classes and their interface 82
Figure 63: ‘PuzzleRoomOne’ class, illustrating the several instances of association to external classes
and enumerations 83
Figure 64: ‘PuzzleRoomTwo’ class, part one of three illustrations of the class’s substantial level of
association and instances of enumeration 84
Figure 65: ‘PuzzleRoomTwo’ class, part three of three illustrations of the class’s substantial level of
association and instances of enumeration 86
Figure 66: ‘PuzzleRoomTwo’ class, part two of three illustrations of the class’s substantial level of
association and instances of enumeration 86
Figure 67: ‘PuzzleRoomThree’ class, identify the only association, to the ‘InteractionController’ class
(classes functionality is conceptual and not developed) 86
Figure 68: ‘SubtitleToggleAnimator’ class, showing the only association, to the ‘ButtonController’
class 86
Figure 69: ‘SubtitleController’ class, illustrating the only association, to the ‘PuzzleRoomOne’ class 87
Figure 70: ‘PlayerController’ class, identify the associations to the ‘ButtonController’,
‘LeftJoystickHandler’, ‘InteractionController’, ‘PlayerAnimation’ and puzzle room classes, as well as
the instance of enumeration 87

Figure 71: ‘InteractionController’ class, showcase the multiple instances of enumeration and
association to the ‘CameraController’, ‘PlayerController’ and puzzle room classes 88
Figure 72: ‘WindowGUI’ class, showcase the multiple associations to the ‘SceneController’,
‘ButtonController’, ‘InteractionController’, ‘LoadingScreenAnimator’ and puzzle room classes 89
Figure 73: ‘ButtonController’ class, identify the association to the ‘LeftJoystickHandler’,
‘PlayerController’, ‘CameraController’, ‘WindowGUI’, ‘SubtitleToggleAnimator’ and puzzle room
classes 89
Figure 74: ‘LeftJoystickHandler’ class, display the association to the ‘ButtonController’ and
‘PlayerController’ classes, as well as the application of enumeration and multiple instances of
inheritance 90
Figure 75: ‘SceneController’ class, showcasing the association to the ‘PlayerController’ and
‘WindowGUI’ classes 90
Figure 76: ‘CameraController’ class, illustrate the association to the ‘PlayerController’ and
‘ButtonController’ classes 91

Tables

Table 1: Puzzle room two, safe puzzle mechanical implementation, detailing the functional
invocation of the puzzle’s components 91
Table 2: Puzzle room two, table piece puzzle mechanical implementation, detailing the functional
invocation of the puzzle’s components 92
Table 3: Puzzle room two, music box puzzle mechanical implementation, detailing the functional
invocation of the puzzle’s components 94
Table 4: Puzzle room two, piano puzzle mechanical implementation, detailing the functional
invocation of the puzzle’s components 97
Table 5: Puzzle room one, telephone puzzle mechanical implementation, detailing the functional
invocation of the puzzle’s components 100
Table 6: Unit test cases, user interface elements 102
Table 7: Unit test cases, player 103
Table 8: Unit test cases, puzzle 104
Table 9: Black-box test cases, user interface elements 105
Table 10: Black-box test cases, player 106
Table 11: Black-box test cases, object interaction within puzzle room two, safe puzzle 108
Table 12: Black-box test cases, object interaction within puzzle room two, table puzzle 109
Table 13: Black-box test cases, object interaction within puzzle room two, music box puzzle 112
Table 14: Black-box test cases, object interaction within puzzle room two, piano puzzle 120
Table 15: Black-box test cases, object interaction within puzzle room one, telephone puzzle 124
Table 16: Black-box test cases, scene transitioning 128
Table 17: Performance profiling test cases, loading screen scene 129
Table 18: Performance profiling test cases, first level scene 130
Table 19: Performance profiling test cases, puzzle room two scene 130
Table 20: Performance profiling test cases, puzzle room one scene 131

Introduction

Background

Under Lock and Key is designed to deliver a player experience that is recognizable yet disparate from
existing three-dimensional puzzle games. For which, gameplay intends to present players with
mechanically-driven challenges that are unique and less predictable than the genres counterparts;
which aims to sustain player interest through heightening cognition and conventions of suspense,
aesthetically and mechanically. Significant to player interest, Under Lock and Key introduces the
narrative of a young girl who is trapped within a housed-environment, which is owned and roamed
by a torturous entity. The young girl is introduced as the player-controlled character, that attempts
to evade the entity to an eventual escape; to progress, the player is required to interact with a
linearly sequenced series of puzzles that exist within multiple interconnected rooms. The puzzles
featured within each of the rooms are authored by the application of models, lighting, cameras,
materials, audio, and user interfaces (UI), that are all bound by scripts1.

Relating to the project contract, the game adopts the intended escape-the-room orientation of
gameplay, that closely aspires to the movie series, Jigsaw [1], and the mobile game series, The Room
[2]. Aspiring to said series intends to stimulate a slowed pace of gameplay, that encourages cognitive
interactions with puzzle components throughout the game2. As a device of pacing gameplay, the
application utilises audio dynamically, for conveying the narrative, addressing player engagement
and for introducing jump scare sequences; this is authored by an array of interactive and transitional
sound effects. When addressing the multi-cultural learning criterion of the game3, it was compulsory
that non-linguistic audio was applied, to prevent restraints on a player’s ability to progress, if puzzles
were to feature auditory developments.

In further correspondence to the series mentioned, the game environments are and were expected
to be low-key lit and compact in regard to scale, and further resemble room-like settings, hence
escape-the-room. Due to the frequent recurrence of specified techniques in the genre4, the
adaptation of said genre conventions aims to incite players with gameplay objectives and a sense of
familiarity that derives from games played prior; aside from enforcing the sinister art style of the
game.

1 These features are outlined in the project contract (see Appendix E).
2 These concepts are mentioned prior and within the literature review (see Appendix A).
3 This criterion was selected within the global checklist (see Appendix F).
4 As discovered from within the preliminary literature review (see Appendix A).

Figure 2: The Room Three, low-key lit, compact, and room-like
environment [3]

Figure 1: Puzzle Room Two, low-key lit, compact, and room-like
environment

Moreover, from a mechanical standpoint, puzzle components are and were typically noticed as
being dependant of each other, for the purpose of becoming interactable, sequentially; said
sequencing is controlled by the completion states of each puzzle room. Linearity can be
acknowledged by the similarities between object geometry, object materials and the combination of
sound effects, object animations and the presence of lighting within the game; these techniques are
used as devices for offering players information, which encourage cognitive interactions with objects
and gradual gameplay progression. As discussed within the literature review, information should be
offered superficially; which aims to challenge the player, without instituting frustration from an
inadequate amount of information provided.

As for the intended methods of interaction, puzzle interactions emphasise the conventional touch,
swipe, and pinch related gestures; supported by both mobile and computer interfaces5. As
discovered within the literature review, gesture interactions prevent the players viewport of the
game world from being cluttered, as opposed to when there is a considerable presence of UI
buttons; as well, interactions of this nature are viewed as more interesting, which sustains player
interest and thereby adheres to the applications production purpose, to entertain. Being a
conventional method of object interaction across the genre, expects to habituate players with the
techniques of object interaction, from their experiences with interactive puzzler games prior6.

5 Support for both platforms was necessary for the development, testing, and publication of the application.
6 These interaction types are exemplified within The House of Da Vinci [5] and Forever Lost [6] mobile games.

Figure 4: The Room, item obtained modelled similarly to puzzle
object [4]

Figure 3: Puzzle room two, music box item and music box stand
modelled similarly

Figure 7: The House of Da Vinci,
multidirectional swipe gesture interaction,

passage the flower through the tiles [7]

Figure 5: Puzzle room two, music box disc
needle alignment, pinch rotate left gesture

interaction

Figure 6: Forever Lost, align the
indicators, touch, and drag gesture

interaction [8]

Motivation

As a student studying Computer Games Programming, the projects foundation as a game application
was appropriate and well-tailored to demonstrating programmatical capability, given the game
development experience accumulated over the duration of the programme. Furthermore,
undertaking the development of a three-dimensional puzzler game with a first-person outlook on
the game’s environments, was advantageous for exercising my abilities to develop a game with a
challenging nature, independently; one which showcases and prescribes personal development7.
Moreover, developing a game as opposed to other software applications, was noticed to be more
relevant to the programme of study and significant to my understanding, experience and practises of
game development cycles and methodologies8.

Relating to the criteria of the project undertaken, the three-dimensional, first-person basis for the
production captivated my attention to the project proposal initially, due to my interests and regular
interactions with mobile and console-based first-person shooter (FPS) titles9. From experience, said
FPS titles often provided adrenaline-spiked experiences, when within close-ranged combat and
scenarios that pressure solo efforts for achieving game-objectives; this enabled the interest and
entertainment values of the games to be sustained, which became a design concept I had wanted to
accomplish within a personal development.

Moreover, from my past experiences with mobile puzzler games as a consumer, the demand for
gesture interaction was of particular interest, as it presented differentiation from other genres of
mobile game; which enabled the interest of the game to be engaged, prematurely. As well, many
mobile puzzler games were recognized for incorporating narrative development, and an escape-the-
room gameplay orientation that heightens player engagement; these posed as concepts for
developing a game upon10.

7 Within three-dimensional modelling, visual motion graphics, image manipulation, sound editing, narrative
building, programming, project management, research, and reporting.
8 These are concepts applicated in real-world environments that surround the game development industry.
9 Examples of such titles are Call of Duty: Mobile [9] and PUBG Mobile [10].
10 Mobile game titles that captivate said interest are Adventure Escape [13] and Faraway 3: Artic Escape [14].

Figure 9: PUBG Mobile, first-person shooter, battle royale
combat view [11]

Figure 8: Call of Duty: Mobile, first-person shooter, multiplayer
game view [12]

Also, as a procedure employed by my A-Level studies11, an array of movie productions were
examined for instituting the narrative development and mise-en-scene concepts of the game; this
research practise was valuable for informing and reinforcing the aesthetic and mechanical design
choices for the gameplay style projected. Conventional to the games studied, the movie productions
that were also explored12, exhibited many similarities aesthetically, auditorily and sequentially,
through the narratives they uniquely depict. All of which discoveries, encouraged the emergence of
the game’s development initiatives, that have been adhered to throughout its development cycle.

Aims and Objectives

For addressing the fundamental requirements of the software application, the deliverable state of
the game should present players with a series of mechanically-driven puzzles13; each of which
engage player interaction through the performance of gestures, that are expected to be
compatibilized with device peripherals and interfaces available to them. In regard to the
requirements of the puzzles implemented, players are expected to show basic numerical and
observational understanding; these skills are significant to their progression throughout the game,
and for personal development purposes, which should be addressed for all cultures and in all
environments14. Lastly, the games scenes should feature multiple world spaces, for demonstrating
the interconnectivity between the numerous puzzle rooms proposed.

11 Media Studies.
12 Jigsaw [1] and Escape Room [17].
13 As specified within the project contract (see Appendix E).
14 This is detailed within the global checklist (see Appendix F).

Figure 11: Adventure Escape: Asylum, room-like environment
and gesture endorsed puzzle interaction [15]

Figure 10: Faraway 3: Artic Escape, area enclosed
environment and gesture puzzle interaction [16]

Figure 12: Jigsaw, puzzle room aesthetic [18] Figure 13: Escape Room, puzzle room aesthetic [19]

The undertaking of this project proposal aims to excel personal game development skills; focusing
upon the simultaneous management and delivery, of a considerably complex piece of software, as a
programmer and project manager. More so significant to the project’s development, my ability as an
newly educated object-orientated programmer, will be recognized; as will my ability to
independently produce a game, that incorporates the proposed graphical elements, narrative
development, and devices of emotional engagement15.

Body

Project Specification

Functional Requirements

Player Interaction

As an interactive puzzler game, implementing functionality that enables players to interact with
objects in their environment, was compulsory to the game. As mentioned in prior sections of this
document16, players should be able to interact with objects throughout the game, using a series of
touch, swipe, drag, pinch, and pinch rotate gestures. Interaction within the game could have been
achieved with the prolific use of buttons, however, upon investigating existing titles within the
three-dimensional puzzle genre [2] [5] [6] [13] [14], the application of gestures were appraised as a
better alternative input technique; through gauging player interest and preserving the viewports
that players are provided with, on the game world17.

Relating to touch-based interaction, a player’s ability to initiate object interaction and puzzle
developments, has always been devised through casting rays at objects through the first-person
camera’s viewport; which visualises the screen space of a devices interface and player characters
perspective. Object interaction through the first-person camera aims to enhance the realism,
believability, and horror of the game, whilst reducing the complexity of camera mechanisms. To
mobilise ray casting, it was required that interactable objects equip collider components, which are
necessary in determining the object that intercepts the ray being cast.

15 All of the features mentioned are extracurricular, self-disciplined principles of the game, which are more
conventional to existing games, rather than what is expected from the programme.
16 And within the functional requirements document (see Appendix B).
17 These concepts were introduced and addressed within the literature review (see Appendix A).

In this determination, game object tags were implemented as a form of conditioning to easily
identify and distinguish between the objects in each of the games scenes; this was especially
beneficial when many game objects were interactable at one time, a scenario that exemplifies this is
when interacting with an array of piano keys, as seen within the piano puzzle addressed in puzzle
room two.

Further discussing the relationship between ray casting and player interaction, alongside touch-
based interaction, ray casting was also adapted for look-based interaction with objects; this requires
the player to align an interactable object in the centre of the first-person cameras field-of-view
(FOV), when being within close proximity of it. Said technique was particularly useful for simulating
motion-sensed lighting, which was used for identifying object interactions, sequentially. Moreover,
look-based interactions were also implemented for entering object interaction views, and as an
initiative for presenting narrative development; this can be seen within the second puzzle room.

Figure 14: Ray casting, ray cast from the first-person camera frustum towards safe door
object, safe door object equips collider component

Figure 16: Unity game engine inspector panel,
piano key C object tag assignment. Available piano

key object tags listed

Figure 15: Puzzle room two, piano puzzle, inside piano key
interaction view

In addition to touch and look-based interaction via ray casting, through the use of peripheral and
interface input, a player is able to interact with objects by performing swipe, drag, pinch and pinch
rotate gestures; all of the which are supported by the game to visualise the manipulation of objects,
similar to the way players would anticipate real-world object interactions and other existing mobile
puzzle game interactions [2] [5] [6] [13] [14]. As outlined in the functional requirements for the
game, player-to-object interaction should consider hold and swipe gestures, supplementary to
touch; this aims to familiarise players with previously played game mechanics, for avoiding early
complication and frustration. Meanwhile, as found within the literature review, puzzle games intend

to provide players with interesting interactions that accumulate challenge; object interactions that
are exclusively touch and swipe dependant, cannot accompany this ambition given their simplicity.
However, as pinch, and rotatory gestures are supported as object interaction techniques, these
production values are fulfilled, and hence were necessary.

Camera Application

For adhering to the first-person reception of the game, the application of the first-person camera
had greater significance aside from providing a visualisation of the game world18. Functionally, the
facing direction of the first-person camera performs as the player objects direction of forward and
backward modes of traversal19. As well, the first-person camera is used to characterize the
animations of the player object, to reduce the threshold for error within collision detection, camera
position translation, and up rise in performance overhead, as opposed to the player object being
animated directly. However, when the first-person camera is disabled, the player cannot interact
with objects, and in result, the player cannot progress through the game; as mentioned in sections
prior, forcing the first-person perspective aims to heighten the realism, believability, and horror

18 From the playable characters perspective.
19 This is described within the functional requirements document (see Appendix B).

Figure 18: Puzzle room two, music box picture, narrative
development scene. Music box picture animates upon the player

being close by and looking at the picture canvas directly

Figure 17: Puzzle room two, table piece, hanging light animates
and brightens the area of the scene, upon the player being close

by and looking at the table globe directly

Figure 19: Puzzle room two, music box puzzle interaction. Music box latch key rotate, latch key position translation, disc spindle rotate,
camera position translation inwards, camera position translation outwards; touch and drag, swipe right, pinch, and rotate left, pinch

inwards, pinch outwards. Captioned left to right

attributes of the game. This technique has wider implications on the theme of suspense envisioned
for the game20; where the use of the first-person perspective targets player immersion, from sharing
the same visual and audible information as the player-controlled character. This was noticed from
my interaction and study upon the computer game title, Slender: The Eight Pages [20]. As
documented within the game’s functional requirements, object interaction via the first-person
perspective also forms as part of the software’s use case scenarios; it was thereby essential that this
mechanism was addressed.

Mandatory to object interaction and narrative development, the first-person cameras primary
function is to captivate visual information, that prompts players with signs that steer the progression
and narrative plot of the game; such information is issued within object interaction views, animation
sequences and audio cues throughout the game. As often referred to throughout the documentation
of this project, this adaptation of the first-person camera perspective was put forth by the studies of
The Room [2] and The House of Da Vinci [7] mobile games. Using this mechanism of the first-person
camera has enabled the pace of gameplay to be slowed, as intended, whilst allowing players to be
challenged, yet superficially navigated though the game.

20 As mentioned within the literature review (see Appendix A).

Figure 20: Slender: The Eight Pages, first-person perspective of an indoor
corridor environment [21]

Figure 23: Puzzle room two, table piece
puzzle, table globe object interaction view,
table piece puzzle iteration one animation

Figure 22: Puzzle room two, music box
puzzle, music box latch key object

animation

Figure 21: Puzzle room one, telephone puzzle,
audio device Morse code translation, Morse

code book object interaction view

Without the first-person cameras ability to translate between object interaction views and the
player object, the game would seem overly complex from an implementation standpoint. Moreover,
the game would appear unconventional and dysfunctional to the genre and provide fewer
interesting interactions, that would also be impractical for the precision and scale of a mobile
interface21.

User Interface

Fundamental to mobile games, UI’s are particularly useful for addressing uncomplicated interactions
and being able to access and manage game settings, that administer select features of the
application. In accordance with the functional requirements of the game, UI’s pose significance to a
players ability to invoke the movement and interaction functionality of the player-controlled object;
in addition to initiating, pausing, resuming and terminating the current game session, and toggling
subtitles that are visualised as overlaying text.

Controlling player movement and invoking object interaction via UI elements is typically unseen
across existing mobile puzzle games, which alternatively exhaust the use of gesture interactions to
achieve. However, as seen within The Room [1] and The House of Da Vinci [5] mobile games, it is
understood that the instance of the camera does not imitate a physical presence and operates
dissimilarly to a player-controlled object; this design choice contradicted my intentions of engaging
player interest and suspense through realism, and so the Call of Duty: Mobile [9] and PUBG: Mobile
[10] styles of user interface were adapted for this purpose. Being an unconventional characteristic of
the genre, does not hinder the production values of the application; instead, it enables the game to
differentiate from the genre for exclusivity purposes, alongside forming an immersive experience for
players22.

Aside from player interaction methods aforementioned, player-related control was appropriated by
the presence of a multidirectional-joystick and series of interactable buttons; these design choices
were necessary for deviating from the techniques employed by object interaction, addressing the

21 Interactions of this type are typically roaming-focussed, as can be seen within Mad Experiments: Escape
Room [22].
22 This was mentioned within the literature review (see Appendix A).

Figure 24: Mad Experiments: Escape Room, first-person camera perspective fixated to
the player-controlled character, roam-focused interaction [23]

dynamic of game interactions, and for adhering to the control of a player character, as opposed to a
camera object. The requirement for controlling a player object is mandatory for inciting game
realism23. For the application of a multidirectional-joystick, it was preferred in comparison to a series
of directional buttons, that would each control a single mode of traversal; given its compatibility
with continuous and intermediated player traversal [24].

Meanwhile, in relation to the visibility of the UI, being able to visualise the UI elements was essential
for invoking the player-controlled objects upward mode of traversal, toggling flashlight activeness
and toggling the active camera perspective. If said mechanics of the game were not impactful to the
style of gameplay presented, a series of touch fields could have been incorporated alternatively, as
seen within the mobile puzzle game, realMyst [25]; using touch fields as opposed to visible buttons
would have benefit the cinematography ideals of the game, which would yet again be a focus of
heightening the games realism and suspense outlooks.

As for the administration of game settings, the game required an additional user interface to address
the user case scenarios relevant to subtitle toggling and for determining the functional state of the
application. Similar to the physical design of the user interface prior, a series of buttons exist to
address the functional requirements of the pause menu; this design choice optimises the games
simplicity and puts forth a normalised procedure for managing application states24.

23 This is outlined within the functional requirements document (see Appendix B) and referred to within
sections prior.
24 A mobile puzzle game that best illustrates this, is The Room Two [27].

Figure 25: realMyst, game world cinematograph captivation, UI elements not visible
to player, touch fields used to control player traversal through the world [26]

Figure 26: The Room Two, game paused state, pause menu interface (captured
from the game directly)

System Design

System Architecture

In accordance with the systems design objectives25, the deliverable state of the game was expected
to address camera object control, player object control, player interaction, puzzle sequencing,
navigable configuration menus and interfaces, as well as audio cue subtitling. For adhering to the
implementation of these functional requirements, the preliminary Unified Modelling Language
(UML) diagram featured in the SDD was referred to, as the basis for the games back-end architecture
implementation, during the initial development stages of the software.

Relating to the architecture proposed in the preliminary UML diagram, it was anticipated that the
functional requirements of the game were componentised into classes of separate functionality,
which when combined, resemble a model-view-controller (MVC) design pattern; this was
intentionally designed for isolating the functional requirements of the game, maintaining the
robustness of the applications code base and issuing application updates to player input, through
event handling [28].

In continuation of design patterns, the preliminary architecture of the application also considered
the use of object-orientated programming (OOP) principles26, for maintaining the organisation of the
applications code base, and optimising the applications pace of development27. Whereas
functionally, the inclusion of the OOP principles were purposed for addressing similar functionality
between classes and preventing unintentional modifications to another class’s members.

Since the initial design and development of the application, the back-end architecture of the game
has been modified drastically from the preliminary intent, as a result of unforeseen error, extension
to the games interaction proposal and the underestimation of method density. A noticeable
difference between the final and preliminary designs is the absence of the ‘AudioController’ class,
which throughout the development of the application, had no significance to the robustness of the
applications code base, and was instead a hindrance to the simplicity of invoking audio cues28. To
overcome this impediment, audio sources were retargeted as components on game objects being

25 Specified within the system design document (SDD) (see Appendix D).
26 OPP principles considered were abstraction, encapsulation, inheritance, and polymorphism.
27 As intended and referred to within the system design document (SDD) (see Appendix D).
28 Where multiple definitions of identical game objects existed in discrete classes.

Figure 27: Model-view-controller (MVC) design pattern [29]

accessed by classes referencing them already; as opposed to their existing game objects for
addressing audio, exclusively.

Additional to the back-end architecture envisioned in the preliminary design, many classes reserved
for object animation have also been incorporated29. Their existence within the application was
necessary for utilizing animation events30, which enable the narrative development of the game to
be driven and depicted. However, as a restraint of the Unity engine [30], for the use of animation
events, it is required that the methods that animation events invoke are separated by class and
script; as opposed to existing collectively, which is preferred31.

29 These classes present associative relations to the game’s fundamental classes.
30 These are used to conditionally invoke other functionality during object animation sequences.
31 This informed my decision for creating classes independently of each animated object.

Figure 28: Puzzle room two, ‘PianoPlayableKeys’ object, numerous audio sources seen attached as components within
Unity’s inspector panel

Figure 29: Puzzle room two, carousel music box object, animation timeline within the Unity engine, showcasing the
presence of animation events. Method being invoked by the animation event is shown within the inspector panel, and

within the animation timeline as a widget

Moreover, accounting for the readability of the applications code base, enumeration was adapted
for restructuring the way in which class members were indexed. Offering a linguistic representation
for indexing class members was insignificant to the performance of existing functionality, however,
its application was necessary for addressing syntactical intricacies of class members, that rose in
quantity over time32.

In further relation to class members and the preliminary architecture of the application, the use of
container class members were not forecast in the initial UML diagram produced, whereas the final
architecture displays coherent use of lists and arrays33. Throughout the development of the
applications code base, it was acknowledged that the functional density of class methods required
more variables to address the behaviours intended, than what was projected in the initial design. In
result, the games development slowed due to the depreciation of code organisation, that was
inhabited from an increase in variable declaration and initialisation statements. The insertion of
arrays and lists better presented the application code when combined with the enumeration
mentioned prior, which inclined the applications robustness and pace of development34.

User Interfaces

Relating to the preliminary UI expectations of the application35, multiple interfaces were necessary
for delivering player-controlled character movement and interaction, alongside initiating, pausing,
resuming, and terminating the current game session, and toggling the activeness of the integrated
subtitle system36.

In the order of implementation, the initial design for the loading screen UI, functionally expected the
initiation and termination of the game session, alongside being able to toggle the active state of the
subtitle system. In accordance with the functional requirements document, it was projected for said
functionality to be invoked via the application of interactable buttons; which were aesthetically
designed to resemble an ascending arrangement, with intent of being unconventional to existing
menu designs.

With regards to the applications adherence to the design put forth, the UI implements all of the
functional requirements mentioned, for fulfilling the games use case scenarios from the perspective
of a player; this has been achieved through the support of interactable buttons, which physically

32 This was a defect of the applications code base expanding over the course of its development and was not
anticipated within the preliminary design.
33 These variable types have presence in the majority of the systems classes.
34 There are also reduced implications to performance, which was a design constraint considered within the
system design document (see Appendix D); for the modernized, back-end architecture of the game, see
Appendix H.
35 Referred to in the functional requirements for the game (see Appendix B),
36 All of the functionality implemented and referred to within the interfaces, are governed by the
‘WindowGUI’, ‘SceneController’ and ‘ButtonController’ classes (see Appendix H). The user interface
implementations present the front-end architecture of the application.

Figure 30: ‘PuzzleRoomTwo’ class, conditional use of enumeration for indexing Boolean array members

conform to the initial design layout. Meanwhile, separate to the interface’s behaviours, the game
title field37 has been substituted for a static image, representing the games brand; this offers an
enhancement to the scene’s aesthetic, as opposed to using text. The images position within the UI
canvas also differentiates from the game title fields; this aims to captivate the cinematography of
the scene, effectively.

Relating to the initial design of the pause menu UI38, players were expected to resume and exit the
current game session, in addition to toggling the subtitle systems active state. The invocation of said
functionality was also proposed by a composition of interactable buttons39, which aimed to be
anatomically similar to a list. This purposed to prevent unintentional interactions with other buttons
in the interface.

As can be observed from the pause menu design delivered, the UI adheres to its functional
requirements through the adaptation of interactable buttons; each representing and administering
the resume, subtitle toggle and exit features of the game. Contesting the preliminary design layout
of the pause menu UI, the final design of the UI overlooks the menu title field, for adhering to the
demand for simplicity, and non-linguistic representations of game elements. Upon the preliminary
UI design being delivered, the implications of presenting a menu title were not yet realised for
addressing the multi-cultural learning criterion of the game40.

37 Detailed in the functional requirements document (see Appendix B).
38 Aligned with the pause menus functional requirements (see Appendix B).
39 As seen within the loading screen user interface.
40 This is detailed within the global checklist (see Appendix F).

Figure 31: Loading screen scene, showcasing the loading screen menu user interface design

Lastly, with regards to the preliminary design of the in-game UI, it was significant that the interface
addressed the players ability to invoke player-controlled character traversal, to toggle the active
state of the flashlight, to alternate between active camera perspective and to invoke the presence of
the pause menu interface; all through the inhabitation of interactable buttons41. Furthermore, the
initial interface design also details an image field, purposed for visualising items that the player
obtains; this was expected to be physically dependent of the UI’s functional elements42. For which,
the partitioning of UI elements portrayed within the interfaces preliminary design, was targeted to
evading viewport obstruction, addressing the landscape orientation of gameplay, and for preventing
unintentional functional invocation43.

As noticed from the finalised in-game UI design, the image fields that intended to exhibit obtained
items were not implemented; this was due to their insignificance in enabling players to identify
gameplay objectives and for their contribution to cluttering camera viewports. Alternatively, the
principles for the image fields were addressed by regulating similarities in object geometry and their
material properties. Relating to player-controlled character traversal, interactable buttons were
subsequently replaced for a single multidirectional-joystick, for the support of continuous and
intermediate adjustments to the player objects movement speed, and supplementary audio cue
dynamics44.

Additionally, the physical arrangement of the camera toggle and jump buttons discriminate from
their alignments projected within the preliminary design; this adaptation clusters the functional
invocation of the interface, into separate physical areas for its ease-of-use. Aside from the aesthetic
discrepancies between the UI designs, all of the functional requirements expected from the
interface, are addressed; which fulfils the front-end user requirements for the application.

41 This is referred to within the functional requirements document (see Appendix B) and is reprocessed from
the user interfaces discussed prior.
42 This is not obligatory to the applications functionality, as mentioned within the functional requirements
document (see Appendix B).
43 This is a design concept that is shared with the pause menu user interface.
44 As mentioned in the Background section.

Figure 32: Pause menu user interface, displaying the resume, toggle subtitle and exit application buttons

System Implementation

Software Development

Loading Screen

For the initial development process of the loading-screen scene, a series of graphical images were
rendered with the software application, Adobe Photoshop [36], which prepared the front-end
architecture of the scene45; by addressing the desired aesthetic46, animated components and
alignment for the UI elements47.

45 Images included the backgrounding imagery for the scene, button textures and the game logo.
46 Referred to in the Background section.
47 This is mentioned within the system design document (see Appendix D), and in the section prior.

Figure 33: In-game user interface, showcasing the joystick, jump, flashlight toggle, camera perspective
alternate and pause menu buttons

Beyond the scene’s aesthetic development, a series of interactable buttons were placed within the
UI canvas to address the scenes functional requirements; to initiate and exit a game session, and to
toggle the active state of the subtitle system48, as a player. This functionality was adhered to in the
initial development of the ‘WindowGUI’, ‘SceneController’, ‘ButtonController’ and
‘LoadingScreenAnimator’ scripts49; where the start, toggle subtitle and exit application buttons
invoke the ‘OnGameStart’50, ‘SubtitlesToggle’51 and ‘ExitGame’52 methods53.

Additional to this functionality, a graphical user interface (GUI) resembling a disclaimer window was
implemented, as the functional invocation for the start button. This was a mandatory design feature
for informing players about the games theme of content54; players are able to acknowledge the
disclaimer via interacting with it, as delivered in the ‘OnGUI’ and ‘DisplayDiscliamerGUI’ methods55.

48 This is referred to in previous section of this document.
49 Appendix H.
50 Within the ‘WindowGUI’ class (see Appendix H).
51 Within the ‘ButtonController’ class (see Appendix H).
52 Within the ‘SceneController’ class (see Appendix H).
53 Appendix H.
54 Referred to within the ethical review document (see Appendix G).
55 Within the ‘WindowGUI’ class (see Appendix H).

Figure 34: Adobe Photoshop CC 2017, displaying the software’s interface and the UI elements created for
depicting the loading screen

Figure 35: 'WindowGUI', 'ButtonController' and 'SceneController' classes, representing the functionality of the
methods directly invoked by the interactable buttons

Advancing from the disclaimer prompt, a series of animations were applied to the UI images created
prior; this was achieved using Unity’s animator interface and animation timeline. Said animations
were implemented for the enhancement of the scene’s cinematography56 and were invoked
sequentially, via the ‘StartGameSequence’ enumerator method57.

Base Scene

Regarding the initial development procedures for the base scene, an array of light58 and three-
dimensional objects59 were populated and merged by hierarchy within Unity’s editor interface; this
purposed for visualizing the hub to the room-like environments, proposed for the games escape-the-

56 With the intent of captivating player interest prematurely, as discussed in the Background section.
57 Within the ‘WindowGUI’ class (see Appendix H), this method is invoked upon the disclaimer window being
acknowledged.
58 Used to highlight room numbers and to increase the visibility of the scene.
59 Cubes, planes, and particle systems were used.

Figure 36: 'WindowGUI' class, displaying the methods invoked by the disclaimer window. The disclaimer window GUI is shown in
top-right region of figure

Figure 37: Unity's animator interface, showcasing the relations between the silhouette objects
animation states. Animation timeline is seen in the bottom region of the applications interface

room orientation60. For which, three-dimensional modelling applications were not approached61,
due to the low-polygonal designs of objects62, that could be addressed within Unity63.

Alongside the aesthetic application of the scene, a series of empty game objects were also
populated in the scene, for addressing the player-controlled characters requirement to exist in
multiple environments64. To achieve such, all but two of the objects65 were attached with a collider
component, configured as a trigger66; this was necessary for checking collisions that were registered
by the player object67. For authoring the third and first-person perspectives of the game68, the player
object was used to hierarchically parent two camera objects69.

60 Discussed within the Background section.
61 Such as Autodesk Maya, previously referred to.
62 Using three-dimensional modelling applications is more time consuming for unsophisticated models.
63 Unity engine was sufficient and more efficient for modelling unsophisticated objects.
64 For demonstrating the interconnectivity of the puzzle room scenes, and for fulfilling player-character
control. This is mentioned in the Background section,
65 Reserved for the player-controlled character, and its flashlight child object.
66 The player-controlled character applied a capsule collider, not configured as a trigger, for the purpose of
collision detection capabilities.
67 For the purpose of invoking door object animations, and loading other game scenes appropriately, with
consideration to the players progression. This is addressed by the ‘OnTriggerEnter’ method, within the
‘PlayerController’ class (see Appendix H).
68 Detailed as a functional requirement for the game (see Appendix B).
69 Each camera object was configured with a different field-of-view (FOV) and local-position, relative to the
player object. This enabled a perspective difference to be stimulated.

Figure 38: First level scene, displaying the decagonal arrangement of door and wall objects. Game object
hierarchy is also demonstrated

Supplementary to the games design, the functional and aesthetical70 implementations of the pause
menu and in-game UI’s, were prioritised for adhering to the fundamental user requirements of the
game, and for being a necessity to testing procedures. For which, a UI canvas object was created for
parenting a series of button, text, and image UI objects71. The functionality that was intended for
each of these elements72, was designated upon completing its preliminary implementation73.

70 From the use of the image manipulation software application, Adobe Photoshop.
71 Said objects possess image, text, button, and event trigger components for addressing each interfaces
functional requirements, as projected within the functional requirements document (see Appendix B).
72 This functionality was composed up of the ‘FlashlightToggle’, ‘CameraToggle’, ‘PauseGame’, ‘ResumeGame’
and ‘ExitGame’ methods, which reside within the ‘ButtonController’, ‘WindowGUI’ and ‘SceneController’
classes (see Appendix H). Additionally, the implementation of the ‘LeftJoystickHandler’ and ‘PlayerController’
classes were advanced, relative to the player movement and player animation-based methods.
73 Assigning scripts to the button elements of the UI, required the passing of the scripts to their button
components ‘OnClick’ field. This allowed individual methods of the scripts class, to be selected and invoked
upon click-based interaction.

Figure 39: Base scene, exemplify empty game objects with collider attachments, configured as triggers, for the use of scene
transitioning. Illustrate box collider component attached to door object, for preventing player object from transitioning to

other game scenes. ‘PlayerController’ class implementation of the ‘OnTriggerEnter’ method, shown in the bottom region of
the figure

Second Puzzle Room

Meanwhile, for the initial development of the second puzzle room, a series of planes and cube
objects were arranged into the formation of a box74; this layout provided a simple basis for a room-
like environment75. Each of the objects were given a material, and collider component to prevent the
player-controlled object from leaving the playable area76. Accompanying this, the door and dark area
objects from the base scene were prefabricated and recycled, for time preservation purposes77; as
were the UI canvas and player objects.

74 The planes where purposed for the ground and ceiling surfaces of the room, whereas the cube objects were
used as walls to border the environment.
75 Which is a fundamental design concept for the escape-the-room orientation of the game.
76 This use of collider components has been adapted for addressing a functional requirement of the game, to
prevent a player from leaving the intended area of play, as detailed within the functional requirements
document (see Appendix B).
77 Prefabricated objects employed the same materials, components, and configurations.

Figure 40: Pause menu and in-game UI designs, displaying UI canvas object hierarchy in relation to its UI
elements. Aesthetic design process of UI elements within Adobe Photoshop is shown. Script passing to UI

button elements is illustrated also.

Safe Puzzle

Fundamental to the safe puzzle, touch, look, and swipe-based interactions78 in combination with
audio dynamics79, were implemented as the puzzle’s mechanical focus80; which govern the rotary
procedures for the safe dial object81, and the resulting iteration of the puzzle82. For the performance
of these interactions, camera mechanisms83 were also addressed for stimulating an interaction
view84. Said view could be incited by the player, through touch-based interactions with puzzle
objects85.

78 Core focuses of the functional requirements (see Appendix B), and literature review documents {see
Appendix A).
79 Audio is reactively invoked by player interactions.
80 The safe puzzle presents a trial-by-error focus for solving, which aims to heighten cognitive learning
processes, through repetition.
81 Rotary mechanics of the safe dial object are subject to the direction and type of swipe interaction
performed. As well as being factored by the current iteration of the puzzle, determining the direction that safe
dial object can be turned. Audio cues are invoked, to identify the correct numbers in the combination.
82 Each iteration of the safe puzzle is represented by each number correctly navigated to, in the combination.
83 Camera applications are detailed in the Functional Requirements section.
84 The requirement for object interaction views is detailed within the functional requirements document (see
Appendix B).
85 Picture canvas, safe dial, and safe door objects; all of the objects referred to were modelled within the
three-dimensional modelling software application, Autodesk Maya.

Figure 41: Puzzle room two, showcasing the room-like environment, constructed from a series of cube and plane
objects. Collider components are visualised by the green borders of geometry and within the inspector panel,

alongside the material equipped by a wall object

The puzzles dependence on audio dynamics, is purposed to challenge players unconventionally86;
which is intended for slowing the pace of gameplay and promoting cognitive learning. This principle
is presented by the puzzles fail-safe design87, which is administered by a range of methods within the
‘PuzzleRoomTwo’ class88. For introducing the puzzle to the player89, a combination of audio and
animation components were assigned to a hanging-light object; which was strategically fitted, for
implying the initial interactions of the scene90.

Table Piece Puzzle

Similar in mechanical outlooks as the safe puzzle, the table piece puzzle utilises touch, look, and
swipe-based interactions91, audio cues and camera mechanisms, for authoring puzzle
establishment92 and developments within the scene’s narrative93. Alongside the functionality
specified, the puzzle also integrates a multidirectional rotary mechanic94, and a picker mechanic95,
for its globe and country marker objects. This integrates challenge96, through exercising a player’s
ability to reminisce and reproduce animated sequences97, interactively.

86 This was detailed within the literature review (see Appendix A), for the purpose of being dissimilar to
existing game objectives in the genre.
87 The puzzle caters for repetition and error conditioning, which is factored by the safe dial object being
rotated in the opposing way intended for a given puzzle iteration.
88 For the safe puzzle logic and implementation specifics, refer to Appendix I.
89 As a source of information, offered to the player for assisting progression. This is conceptualised within the
literature review (see Appendix A).
90 The audio source equipped three-dimensional spatialization effects for enabling players to locate the source
of the sound, whilst the animation state entailed light component flickering, to visually reinforce the sound
effect being played. The hanging light object also positions above the interactable objects, to exhibit
interaction.
91 Swipe interactions for the table piece puzzle adopt a touch-drag orientation.
92 Look-based interactions with the table piece stand is applicated to invoke hanging light animation states,
that identify and invoke behavioural support, for puzzle interactivity.
93 Authored by non-linguistic audio cues, as a mandatory feature of the game, discussed within the functional
requirements document (see Appendix B).
94 Applied to the table globe object, for enabling non-visible country marker objects, to be translated into the
viewport of the camera.
95 Applied to the country marker objects, for addressing selective sequencing.
96 Discussed within the literature review document (see Appendix A).
97 Players are expected to observe an animated sequence of material-lit country marker objects, and to then
reproduce the sequence, via touch and swipe-gesture interactions with the table globe and country marker
objects.

Figure 42: Puzzle room two, hanging light object above the picture canvas object, safe object, and the safe interaction
view perspective (captioned left to right)

In further correspondence to the challenge presented, the puzzle issues a series of object-animated
sequences, that incline in length and interactive requirement, for every iteration of the puzzle that
the player reproduces correctly98. Said sequences and interactive engagements are supplied by the
presence of object animator, audio source and collider components; which have behavioural
implementations residing in the ‘PuzzleRoomTwo’ class99. Additional to the implementation
discussed, the puzzle also adheres to a fail-safe design, for addressing puzzle resequencing and
cognitive learning focuses100.

Music Box Puzzle

Essential to the music box puzzle, touch, look, swipe, pinch101, and pinch-rotate102 interactions were
incorporated103, for addressing the assembly procedures of the music box104, engaging the picture
frame, initiating carousel music box and hide cinematics105, and for obtaining the catalogue of music
box items106. To captivate the realism and immersion prospects of said interactions107, a combination

98 For every iteration of the puzzle that is reproduced correctly, the following sequence expands by one entry.
99 For the table piece puzzle logic and implementation specifics, refer to Appendix J.
100 For the sequencing orientation of the puzzle, a player’s ability to remember orders can develop (see
Appendix F).
101 Pinch inwards and outwards gestures are used to invoke the ‘Z’ dimensional translation of the first-person
camera, within the music box interaction view.
102 Implemented to visualise a rotary offset for objects, which feature a rotary-basis of interaction.
103 For their visualisation, see figure 19.
104 The puzzle fundamental objective is to assemble the music box, using the music box items obtained in
previous developments of the puzzle.
105 The picture frame cinematic purposes as a sinister development in the narrative, that characterises the
torturous traits of the entity; the carousel music box cinematic purposes as a jump scare sequence, that
introduces a unique method for obtaining puzzle items, and for heightening the sinister theme projected for
the game; the hide cinematic purposes as a narrative development for the game, that amplifies suspense and
plot interest.
106 Music box, music box disc, music box lid latch key and the music box spindle wind up key; all of the
mentioned objects were modelled within Autodesk Maya.
107 Conceptualised within the literature review document (see Appendix A).

Figure 44: Puzzle room two, table piece puzzle,
displaying table globe interaction view and

arrangement for the country marker objects (material-
lit)

Figure 43: Puzzle room two, table piece puzzle,
showcasing the first puzzle iteration, animation

sequence

of camera mechanisms108 were supplemented to the range of object interaction perspectives109, for
stimulating player-controlled camera translation throughout the puzzle110.

As the fundamental basis of the puzzle, interaction sequences were complemented by a series of
animations and audio cues, for identifying the progress state of each interaction111, and for
addressing the cyclical mechanisms of incomplete interactions112; which are functionally
implemented within the ‘PuzzleRoomTwo’ class113. For authoring challenge, players are expected to
discover and acknowledge the variety of interaction methods114, used to manipulate the position
and rotation offsets of objects, for the sequence of interactions presented115.

108 Multidirectional camera movements in the form of panning, camera position translation for simulating
zoom movements, and the prevalence of entering and exiting object interaction views.
109 A series of interaction views were implemented for isolating and invoking the music box item interactions.
110 Camera translation was necessary for supporting touch-based interactions, on a range of mobile device
interfaces that each vary in screen size and responsiveness.
111 Conveyed through the invocation of sounds that reinforce the visualisation of object-animated alignment
and translation sequences.
112 Incomplete interactions can be reattempted at any point, for allowing players to attempt other object
interactions that are familiarised interaction techniques.
113 For the music box puzzle logic and implementation specifics, refer to Appendix K.
114 Aimed at the development of players investigative abilities (see Appendix F).
115 Object interactions are not typically sequenced but some interactions are required to be complete, before
other object interactions can be invoked.

Figure 45: Puzzle room two, music box puzzle, showcasing the picture frame, carousel music box and
wardrobe cinematic sequences, alongside the collection of music box items that can be obtained

(captioned left to right)

Piano Puzzle

Fundamental to the piano puzzle, touch, look and swipe-based interactions, were functionally
expanded and reapplied116 in combination with camera mechanisms117; for authoring the puzzles
interactive development focuses, upon a book118, bookshelf119, bookstand120 and an array of piano
objects121. Said developments were supplemented with animations and audio cues, for visual
reinforcement purposes122. For the puzzle’s main interaction123, a series of cyclical mechanisms were
integrated, for addressing error-handling within the puzzles time-driven, yet sequenced-based
design124; this enables the puzzle to be reattempted, as part of a cognitive process125.

Relating to the significance of time, a sequence of musical notes126 must be reproduced by players,
through a series of piano key interactions127, which independently occur within five second
intervals128. Time is factored as a pressure-mechanic, which is used to default puzzle progression, if

116 Swipe-drag gestures were readapted, for allowing objects to be gradually translated, parallel to the moving
motion of device peripherals and touch input.
117 Recurring use of techniques to enter and exit object interaction views.
118 Can be obtained, placed, and used to extract the music note sheet from its pages.
119 Fundamental to the puzzle’s initiation, a light switch embedded within the bookshelf can be interested with
to allow the interaction with the book object, upon the puzzle-specific light becoming active in the scene.
120 Designed as a placeholder to extract the music note sheet from its pages.
121 Piano shelf and piano key objects; all of the objects presented were modelled within Autodesk Maya.
122 Audio cues and animations were significant to the piano key objects, which were used to identify the keys
being pressed and for enabling players to remember components of the sequence, auditorily. Upon the puzzle
being reattempted.
123 Piano key interactions.
124 The puzzle requires players to reproduce the music note sequence, as an interrupted interaction.
125 As conceptualised within the literature review document (see Appendix A).
126 Provided in a texture applied to a plane’s material. This devises information offering for assisting puzzle
progression, as discussed within the literature review document (see Appendix A).
127 Each piano key object attaches a animation and audio source component, to inform the interactions.
128 A piano key must be interacted with, for every five seconds passed, or the puzzle progression will be reset.

Figure 46: Puzzle room two, piano puzzle, showcasing the book, bookshelf, bookstand, and
piano object interaction developments

the conditions are not adhered to129. The functional implementations of the puzzle’s mechanisms
are specified within the ‘PuzzleRoomTwo’ class130.

First Puzzle Room

Relating to the initial development of the first puzzle room, prefabricated objects created in the
second puzzle room and base scenes131 were reimported; for addressing consistency throughout the
games aesthetical and mechanical configurations132. However, as the levels design deferred from
inter-wall storage spaces133, the composite of the ‘walls’ prefabrication needed updating134.
Alongside this alteration, the tags that the objects were defaulted to, were also replaced for being
irrelevant to the room, and for appropriating functional invocation and conditioning within class
methods135.

Telephone Puzzle

As the first and only mechanic-aggregate in the scene136, the telephone puzzle incorporates the use
of camera mechanisms137, touch, look, and swipe-based interactions138, as well as audio cue

129 Requiring players to reattempt the piano key sequencing element of the puzzle.
130 For the piano puzzle logic and implementation specifics, refer to Appendix L.
131 This included the user interface canvas, player, door, dark area, walls, and plane objects.
132 This process was hugely significant to sustaining the pace of development also, as opposed to recreating
existing assets of the game.
133 Used by the second puzzle room, as the table piece puzzle key storage, and music box puzzle part storage.
134 A series of cubes and planes used to depict wall spaces, that were covered by picture canvas objects.
135 This was necessary for preventing the player-controlled object from being able to progress to other scenes,
without completing the puzzle room interactions. This would alert a conditioning defect within the
‘OnTriggerEnter’ method, in the ‘PlayerController’ class (see Appendix H), if not addressed prematurely.
136 The first puzzle room was designed to demonstrate the interconnectivity to the main development: the
second puzzle room. This was also purposed for showcasing the more-skilled implementations of gameplay
mechanics, through later progressions in the game.
137 Camera applications are detailed in the Functional Requirements section.
138 Said interactions are mentioned in the Functional Requirements section and originate within the functional
requirements (see Appendix B), and literature review documents {see Appendix A).

Figure 47: Puzzle room one, room layout, featuring the walls, planes, door, and dark area prefabricated objects of the scene

invocation, to address challenge and narrative developments139 throughout the scene. The
fundamental objectives of the puzzle utilise the interaction types listed, for interacting with a series
of objects140, that each reveal a unique segment of a telephone number141.

This number sequence presents mechanical significance to the telephone object142, which can be
operated143 to identify the correct order of the number segments144; cyclic mechanisms that allow
the telephone object to be re-dialled, are invoked upon the incorrect number sequence being
submitted145. Necessary for the puzzle’s progression, the placement of animations, audio-to-text
translations146, and audio cues are used for offering information to players147; the application of
these engagements is managed by the series of ‘PuzzleRoomOne’ class methods148.

139 Mentioned within the literature review document (see Appendix A).
140 Ornament stand, book, audio device, glass cabinet, and a note accompanied by a clipboard; all of the
objects mentioned were modelled within Autodesk Maya.
141 The telephone number is addressed as an integer array, which is used within the ‘DialTelephone’ method
for comparing the telephone button interaction input. Seen in the ‘PuzzleRoomOne’ class (see Appendix H).
142 As the main feature of the scene.
143 Subject to the puzzles progress state, which is managed within the ‘TelephonePuzzleSolving’ method, as
seen in the ‘PuzzleRoomOne’ script (see Appendix H).
144 This is the underlying aim of the puzzle room components.
145 These mechanics purpose for conditioning error, said conditioning can be found within the ‘DialTelephone’
method, located in the ‘PuzzleRoomOne’ class (see Appendix H).
146 Addressed by the presence of three-dimensional objects that employ materials, which equip illustrative-
based textures. Said objects and textures were modelled and produced within Autodesk Maya, and Adobe
Photoshop software applications.
147 This technique is referred to within the literature review document (see Appendix A), and the Background
section.
148 For the telephone puzzle logic and implementation specifics, refer to Appendix M.

Figure 48: Puzzle room one, showcasing the appearances of number segments, through object interaction views and
audio cue invocation, which is assisted by subtitles when enabled. Face mask, audio device and clipboard object

touch-based interactions (captioned left to right)

Development Adherence

Leading the development of the application, and the production of the projects supporting
documentation, the agile software development framework, SCRUM, was integrated as the project’s
development scheme. This framework was targeted for its incremental delivery of application
behaviours, through segmenting its functional requirements into ‘sprints’; which are designed for
enhancing the productivity of the projects development, and the delivered quality of its products
[31]149.

Accompanying the exploratory testing-basis for the applications behaviours, the incremental-
development focus of the framework, enabled application functionality to be refactored quickly, as
code base expansions were supplemented to the application in gradual, manageable volumes. This
process further facilitated test-driven development, which assisted with the identification and
refactorization of behavioural abnormalities, across the back-end and front-end architectures of the
application. As well, alterations and extensions anticipated for the applications design, during its
development cycle, could be addressed quickly150.

In preparation of the project’s undertaking, a Gantt chart representing the time investment, and
resource requirements for completing the project was assembled; the existence of said chart was
functionally significant to the development plan of the project151. Though the chart does not detail
any of the intricate requirements for the projects components, it fulfils its ability to instruct the

149 The projects adherence to the development scheme aforementioned, was initially introduced within the
system design document (see Appendix D).
150 This ability was presented as a flexible characteristic of the framework [31].
151 As a timeline of measures needing to be addressed.

Figure 49: Puzzle room one, demonstrating the telephone object interaction state, as well as the series of engagements for
offering players information. Hanging light animation, Morse code translation and glass cabinet window animation

(captioned left to right)

projects order of development, and to dictate a series of time periods that each element of the
project should be delivered within.

Meanwhile, throughout and upon the accomplishment of the project’s development, an additional
Gantt chart was populated for illustrating discrepancies between the initial development plan
formulated, and the development plan that was exercised. As revealed within the updated version
of the timeline, the adherence to the delivery of most project components was defective; this
became apparent over the development of the project, due to the underestimation of application
function density, deferrals addressed to the project for overcoming difficulties in other modules
being studied, extensions to the functionality originally proposed for the application, and for the
additional time granted for the delivery of the project152.

152 As compensation for the development restraints caused by the social pandemic [32].

Figure 51: Gantt chart, showcasing the time invested into the project’s development for the entire span of the academic year, updated

Figure 50: Gantt chart, displaying the projects preliminary expectations of time investment for the academic year

Problem Resolution

Throughout the development cycle of the application, a range of programmatical, graphical and
auditory defects were encountered, during testing and build procedures. As proposed within the
indicative test plan153 and ethical review154 documents, improper functionality of the application
would be revised, upon its discovery, and the games production values155 would also aim to provide
players with the best gameplay experience possible156.

Discovered within the scenic developments of the second puzzle room, plunges in the number of
frames rendered per-second were observed, from the statistics panel embedded within Unity’s
editor interface; this was identified as a compromise for importing object models with sophisticated
geometry. In use of the tool, the number of vertices used to represent a model’s primitive geometry
could be acknowledged, on a per-object basis, when positioned within the active cameras’
frustum157.

To combat graphical performance dampening, the three-dimensional graphics application, Autodesk
Maya [33], was deployed as an initial effort for increasing the number of frames rendered per-
second; this intention was addressed through reducing the number of polygons that objects employ.

153 Appendix C.
154 Appendix G.
155 As a source of entertainment.
156 Gameplay experience presents particular emphasis on device performance, as a leading influence on the
applications usability.
157 This adaptation of the tool was useful for isolating the models that impacted the graphical performance
mostly.

Figure 52: Puzzle room two, low-poly bookshelf captured within the active camera’s frustum, objects vertex count is show
within Unity's statistics panel

For retargeting objects with lower polygonal counts, a percentage or count representing the
polygonal reduction amount, could be passed in the reduction tools interface158.

Alongside object polygonal reduction, occlusion culling was also configured in each of the Unity
game scenes, for reducing the geometry count that is submitted for rendering; this is achieved by
culling geometry in the scene, which the active camera cannot see [34], thus fewer draw calls are
required for rendering the games environments. For its implementation, geometry culling data
within each of the games scenes was baked, as featured in Unity’s occlusion culling interface.

158 This tool is located within Maya’s mesh tool suite.

Figure 53: Autodesk Maya, carousel music
box object, showcasing the standard

geometry count within the objects mesh

Figure 54: Autodesk Maya, carousel music box
object, displaying the reduced geometry count
within the objects mesh. The mesh geometry

reduction can be seen within the mesh
reduction tools interface

Figure 55: Puzzle room two, visualizing occlusion culling, unoccupied spotlight areas of the scene represent the areas
where geometry has been culled. Occlusion culling configuration is seen within Unity's occlusion culling panel

Also beneficial to the application’s graphical performance, objects that were recognized as
stationary, were registered as static; this allowed the meshes of statically-identified objects, to be
combined for issuing fewer draw calls159 [35]. To address static batch-rendering for individual game
objects, the static field within Unity’s inspector panel was selected; this feature was predominantly
applied to the decorative objects of the game, that bear no functional significance, as aesthetic
commodities.

Moreover, posing as a programmatical hindrance, audio cues would unintentionally loop upon being
invoked, and when the game session is paused prior to the first-person camera being stationed at an
object interaction view. This behaviour was identified as a defect of method conditioning, which was
combated by setting the static Boolean variable, ‘activeAudioPaused’, to its default state within each
of the relevant methods160.

159 As seen within the adaptation of occlusion culling.
160 Enter and exit object interaction view methods.

Figure 56: Puzzle room two, displaying the number of draw calls saved by statically batching stationary objects, as seen within the
statistics panel. Assigning game objects for static batching is illustrated within the inspector panel

Lastly, as part of the rotatory and translation mechanisms for the first-person camera161, when
entering and exiting object interaction views, the camera object would often not reach its target
position and rotation offset; which would cause the game session to become dysfunctional, where
players cannot proceed through the game162.

For reducing the occurrence and impact of the problem, all of the applications functionality factoring
delta time, was replaced with smooth delta time; this was better adapted for smoothing object
animations as well as for reducing calculation oversights163. Also, the implementation of the
camera’s movement was refactored, for comparing the transforms of the camera and target, before
the camera rotates or translates; this aimed to prevent the possibility of the camera object over-
stepping the target transform, for a consecutive number of frames.

Regardless of the efforts delivered for understanding and resolving this error, it remains a
hinderance to the quality of the game. Due to the mechanisms prevalence to function more than to
fault164, the defect could be considered a liability of the integrated methods deployed by the Unity
engine.

161 Camera applications are detailed in the Functional Requirements section.
162 UI elements do not reappear, and object interactions cannot be invoked also.
163 This was assumed to function better for averaging the movement of the camera over time, as opposed to
the camera’s movement being subjected to computational inconsistences.
164 As realized from the regime of testing conducted for the game.

Figure 57: ‘PuzzleRoomTwo’ class, setting 'activeAudioPaused' to its default state when entering
the carousel music box cylinder object view

Testing Regime

Overview

In accordance with the indicative test plan (ITP)165, the applications development was intended to be
tested in an exploratory nature166, upon implementing sections of its code base. As an agile software
testing methodology, exploratory testing has enabled the application to present more expected
behaviours and functionality of its components, over the course of its development [37]; this has
been achieved by refactoring the applications code base, which has been reactive to the
observations and findings of the test cases conducted.

Relating to the categories of testing, unit, black-box and performance profiling were all considered
for gauging the front-end and back-end implementations of the applications design; as outlined in
the ITP, this regime aimed to advance the reliability and usability of the application. For which, the
fundamental focuses of the test regime were upon the application’s graphical complexity and
mechanical composition. For the basis of testing, a vast amount of time has been deferred from test
procedures for enhancing the software’s development cycle167, when compared to formal agile
testing approaches [38]; which was possible by the problematic areas of the application being
identified within the recent implementations of the software.

Unit Testing

For the structural precision of the application, unit testing was nominated for determining the
behavioural expectations of the application168. As mentioned in the ITP, testing by unit is effective
for sourcing the arithmetical, conditional, and the resulting functional defects of an application, this
is due to being able to isolate the values or states of variables and function members [39]. In this

165 Appendix C.
166 A gradual and componentised approach to testing the software’s development.
167 Achieved by isolating programmatical defects upon finding.
168 This was achieved by segmenting the applications code base, into components of functionality.

Figure 58: 'PuzzleRoomOne' class, illustrating the functionality presented for controlling camera movement within the
'EnterTelephoneView' method

relation, it was sensible for selecting unit testing as an approach for identifying errors that may not
be understood, observationally169.

Adopting this strategy into the testing regime, has enabled the correctness of the applications
functionality to be identified from a statistical standpoint170. For the test cases conducted, it was
believed sensible to categorically unit test the application, as each script or controller would typically
be developed independently of each other; allowing the regime for this testing approach to be more
comprehensive.

Black-box Testing

For testing the functional attributes of the application, black-box testing was accepted for identifying
the correctness of the applications behaviours, from a visual standpoint; this allowed the test cases
to be conducted simply and quickly, as opposed to the testing-by-unit approach. As programmatical
involvement was not required, less time was consumed, which allowed time to be allocated to the
applications development processes. Although black-box testing was not suitable for isolating
programmatical errors, it was sensible for recognizing probable sources of error and inefficiencies;
especially within input and output system relations [40]171. The approach was also suited to
exercising the applications user case scenarios172.

In result of its employment, discrepancies within the applications functionality could be identified
from an observational outlook; for this domain, it was well adapted for conducting test cases that
are user case and state transition orientated [41]. Similar to unit testing, the black-box test cases
were categorically conducted and sorted for comprehensive purposes.

Performance Profiling

For testing system performance whilst executing the application, performance profiling was
deployed for the purpose of identifying the applications influence on system performance, from a
statistical perspective; this approach was necessary for measuring system resource consumption and
identifying the subsequent stability and usability of the application. From sampling the performance
of a system, profiling could be used to determine the segments of application code [42] and graphic
properties, that contribute to degrading computational performance173.

By utilising this approach, has enabled the application to be significantly more efficient over the
course of its development; this is evident statistically and observationally. In accordance with the
profiling and accompanying test cases conducted, it was conclusive that the complexity of model
meshes being rendered, as well as the normal map, specularity and detail mask properties that their
materials employed, were impacting the applications performance significantly. From these
observations, it is inevitable that performance profiling was an appropriate strategy for identifying
performance degradation.

169 For the supporting unit test documentation, see Appendix N.
170 In focus of the exploratory testing method, programmatical errors could be erased upon their finding,
which did not hinder future additions of functionality to the applications code base.
171 As discussed within the indicative test plan (ITP) (see Appendix C).
172 As discussed within the software functional requirements document (see Appendix B); for the supporting
black-box test documentation, see Appendix O.
173 For the supporting performance profiling documentation, see Appendix P.

Project Maintenance

Throughout the development cycle of the project, the application code and accompanying
documentation were categorically tasked and organised; this was intended for maintaining the
projects rate of progress and comprehensive state. Programmatically, in use of Microsoft’s Visual
Studio Integrated Development Environment (IDE) [43], the applications code could be partitioned
into regions and commented to contextualise the implementation at every line; this allowed the
functionality of the code to be understood, without regards to the time of its addition to the code
base. For such, regions and comments were populated parallel to the implementation.

Additional to the tools provided by the environment, the preliminary Unified Modelling Language
(UML) diagram174, was implemented and referred to throughout the setup process of the
applications development cycle; this provided the initial structure to the applications code base,
which introduced OOP techniques175. This became apparent due to the existence, types, and
relations between classes; however once implemented, alterations were made to the original design
over time, to cater for the unforeseen functional and behavioural requirements of the application.

174 As seen within the system design document (SSD) (see Appendix D).
175 That were encapsulation, abstraction, inheritance, and polymorphism [44].

Figure 59: 'PlayerController' class, showcasing code segmentation through the application of regions. Comments are also
shown each line of implementation, these are led by the '//' parenthesis

Figure 60: 'Puzzle' class, demonstrating the virtual method
declarations, one of which functions are overloaded. ‘Puzzle’

class is abstract, an interface for the puzzle room classes

Figure 61: 'PuzzleRoomTwo' class, illustrating the virtual
methods being overridden as implementations of the

interface. 'PuzzleRoomTwo' inherits from 'Puzzle' class

Meanwhile, in relation to the production of the testing documentation, the documentation was
supplied simultaneously to the test cases being conducted, on the same systemic basis176; for which,
the structure of the documentation resembles the categorised testing approach. Directing and
documenting the test cases has enabled the testing regime to be better understood and well-
adhered to.

Critical Evaluation

Project Evaluation

System Features

Relating to the objectives and criteria addressed within the project contract177, ethical review178,
global checklist179 and functional requirements180 documents, the delivered state of the system
addresses all of the mandatory behaviours, through the series of mechanical, aesthetical, and
auditory implementations presented. From an architectural standpoint, the application conforms to
all of the OOP principles introduced by the programme, and also boasts a significant amount of
functionality that has been used to address core and subsidiary components181, for of range of
uniquely-designed puzzles.

Given more time was available for the systems development, the first puzzle room would feature
more puzzle components, as intended for the scene; which would entail the gyroscope capabilities
of mobile devices182, for the rotary mechanics of said components. Furthermore, the
implementations for the camera mechanisms would be retargeted, for fulfilling its behavioural
expectations when entering and exiting object interaction views; as it was not possible to address a
stable solution183, for the capacity of time offered. Additional to these applications, input-tracked
gesture interactions could have been implemented, for the compatibility of intricate puzzle
components184, and for the delivery of more interesting interactions185.

With regards to undelivered development, the functional requirements document186 details the
apparency of image fields within the in-game UI design187; which was purposed for displaying the
items that the player obtains. Said feature was retargeted in the game, due to its insignificance in
navigating puzzle progression, and for littering the cameras viewports188. Its absence from the
application, was not a constraint of time nor complexity.

176 As mentioned in the section prior.
177 Appendix E.
178 Appendix G.
179 Appendix F.
180 Appendix B.
181 The main features of interaction for each puzzle, and the intermediate interactions necessary, to reach the
point of main feature interaction.
182 Physical rotations of mobile devices, as opposed to rotary interface interaction.
183 Mentioned in the Testing section.
184 Objects would be able to translate throughout the game world, relative to the position of interaction input.
185 Discussed in the literature review (see Appendix A).
186 Appendix B.
187 Referred to in the system design document (SSD) (see Appendix D).
188 Referred to in the User Interfaces section.

Development Evaluation

Development Approach

For the preliminary instruction of the project’s development, a Gantt chart was populated189, for the
immediate purpose of identifying a componentized format of the projects deliverable items190; this
was then used to allocate an amount of time expected for each components delivery, and the dates
that the components were expected to be delivered on. The preliminary design of the Gantt chart
accounted for the incremental development framework that I had adopted for the project,
SCRUM191.

However, when reflecting upon the development approach that was exercised, the order, time
investments and delivery dates for the project’s components, greatly deferred from what was
originally calculated. This was mostly factored by the developments of the second puzzle room
scene, which subsequently become the initial puzzle development of the system; as opposed to the
planned developments for the first puzzle room scene. Yet, as the second puzzle room scene
envisioned a wider range of puzzle mechanics and aesthetic components, most of the scenes assets
could be prefabricated and reimported into the first puzzle room scene; which benefit the systems
rate of development, allowing for more puzzle components and accompanying functionality to be
implemented, as opposed to what was originally anticipated.

Also, complementing the structural development of the system, a UML diagram addressing the back-
end architecture of the application, was formulated192, and adhered to within the initial setup and
development processes of the game; which posed as the fundamental implementation for the
system. However, throughout the later developments of the application, many classes, methods,
and class members were redacted, refactored, or expanded upon, to cater for the additional
behaviours desired for the game’s scenes, and for overcoming the functional defects that were
discovered within the applications testing procedures193. From the existence of the UML diagram,
the applications mechanical expectations and developments could be quickly acknowledged, which
enabled the implementation process to be hastened.

Academic Advancement

For the role requirements of the projects undertaking, my understanding of managing software
developments has been informed by the timing and delivery nature of the system, as are the
procedures that are required to structure a development plan, for a game application; and to
implement its front-end and back-end architectures, as a programmer.

Meanwhile, for the targeted production values of the game, I have successfully addressed a series of
mechanically-driven puzzles, which engage a range of interactions that employ basic physical,
numerical, and observational skill sets194; suitable for all cultures and environments that players are
subjected to195.

189 Seen in the Development Adherence section.
190 Generically addressed in the project contract document (see Appendix E).
191 Discussed in Development Adherence section.
192 Appendix H.
193 Mentioned within the Problem Resolution section.
194 Detailed within the Aims and Objectives section.
195 Referred to within the global checklist document (see Appendix F).

Tool Evaluation

Development Support

For the entirety of the applications development, the Unity game engine was nominated for its
previous interventions with modules already explored by the programme196; which was well-adapted
for hastening the rate of the games development, as the applications features could be familiarised,
as opposed to being learnt. Also, an integrated IDE supported by the Unity engine, Microsoft Visual
Studio was nominated for the programmatical additions to the game, due to its previous
applications in the programme197, and for its colour-coded interface; that enabled the behavioural
implementations of the game to be addressed quickly. Moreover, as the C# language was also
previously taught198 and integrated within the Unity engine, it was selected as the games
fundamental programming language; as well for its OOP disciplines and library support potential.

Complementary to the game’s aesthetic representation, Adobe Photoshop was utilised for the
creation of the games image assets, given its broad suite of image manipulation tools; and my long
experience with operating its interfaces, and creating images for various applications199.
Accompanying the games graphical elements, Autodesk Maya was employed for the population of
the games sophisticated models; this was used as a result of the software’s teachings within
previous programme modules200, and for its model export compatibility with the Unity engine.

As for the game’s narrative development focuses, Audacity [45] was applicated as a basic audio
editing application, for addressing the games ambient, interactive, and transitional sound effects.
Also applicated in the other modules of the programme201, Audacity was nominated for its suite of
effects and tools that can be administered to manipulate audio.

Acknowledgements

For all the staff stationed at De Montfort University, I express my thanks for an unforgettable
experience as an undergraduate student and for the facilities, resources, and acceptance onto the
programme. I would also like to thank Dr. Jethro Shell as my supervisor and senior lecturer at De
Montfort University over the last three years, as an entertainer, lecturer, and role model.

Moreover, I would like to take this opportunity to thank all those who have and are currently
supporting the United Kingdom, during the episodic outbreaks of the COVID-19 pandemic.

To my family and friends that have supported me throughout this emotional downfall and
heartbreak, during such monumental times, I would like to mention that your efforts will not be
overlooked, thank you. Lastly, for Tanniqua Carter, my first love; I have succeeded like I had always
planned and made sacrifices for, in ways you will never realize. As a society, we acknowledge the
troubles that currently pressure us, but as partners, they are not empathised. I sincerely wish for

196 Mobile Games I and Mobile Games II.
197 Mobile Games I, Mobile Games II, Object Orientated Programming in C++, Advanced Object Orientated
Programming in C++, Introduction to Shaders, Artificial Intelligence for Simulation, Game Engine Architecture
and Game Engine Development.
198 Within the Mobile Games I and Mobile Games II programme modules.
199 Graphic design is one of my fundamental hobbies and interest. Ranging use from animated banners to
simple logos and avatars.
200 Within the 3D Modelling module.
201 Mobile Games I and Mobile Games II.

your return upon this pandemics passing; however, at the time of writing this passage, I am only
able to express my gratitude to you for being an impression on my University experience and life. It
has been memorable.

You will never be forgotten Sugar, Spice and Lucky, thank you for supporting me through the course
of my entry level education; you have been significant to the journey that has led to what I have
achieved now. Farewell.

Bibliography

[1] Jigsaw. (2017) [Film] Directed by MICHAEL SPIERIG and PETER SPIERIG. USA: Twisted Pictures.

[2] Fireproof Games (2012) The Room. [Online] Mobile. Guildford: Fireproof Games.

[3] PDALIFE.com (2020) The Room Three. [Online Image] Available from: https://pdalife.com/the-
room-three-android-a18265.html [Accessed: 03/08/20].

[4] Android Police (2013) The Room. [Online Image] Available from:
https://www.androidpolice.com/2013/04/05/new-game-the-room-ipad-game-of-the-year-2012-is-
now-on-the-play-store/ [Accessed: 03/08/20].

[5] Blue Brain Games (2017) The House of Da Vinci. [Online] Mobile. Bratislava: Blue Brain Games

[6] Glitch Games (2012) Forever Lost. [Online] Mobile. Oxford: Glitch Games.

[7] Droid Gamers (2017) The House of Da Vinci Flower Tile. [Online Image] Available from:
https://www.droidgamers.com/2017/09/07/the-house-of-da-vinci/ [Accessed: 03/08/20].

[8] Glitch Games (2012) Forever Lost puzzle one. [Online Image] Available from:
https://glitch.games/portfolio/forever-lost-episode-1/ [Accessed: 03/08/20].

[9] Tencent Games (2019) Call of Duty: Mobile. [Online] Mobile. Santa Monica: Activision.

[10] Tencent Games (2017) PUBG Mobile. [Online] Mobile. Seoul: PUBG Corporation.

[11] The Indian Express (2020) PUBG Mobile combat view. [Online Image] Available from:
https://indianexpress.com/article/technology/gaming/pubg-mobile-new-anti-cheat-system-
6503832/ [Accessed: 04/08/20].

[12] Gamebraves (2018) Call of Duty: Mobile multiplayer beta. [Online Image] Available from:
https://www.gamerbraves.com/tencents-call-of-duty-mobile-is-now-in-closed-beta-screenshot-
leaked/ [Accessed: 04/08/20].

[13] Haiku Games (2015) Adventure Escape: Asylum. [Online] Mobile. Stanford: Haiku Games.

[14] Snapbreak Games AB (2018) Faraway 3: Artic Escape. [Online] Mobile. Gothenburg: Snapbreak
Games AB.

[15] APK Pure (2016) Guide Adventure Escape Asylum. [Online Image] Available from:
https://apkpure.com/guide-adventure-escape-
asylum/com.cepetkasil.adventureescapeasylum5kamin [Accessed: 04/08/20].

[16] Lelula Games (2019) Review: Faraway 3 Artic Escape. [Online Image] Available from:
https://girlwithswords.wordpress.com/2019/03/02/review-faraway-3-arctic-escape/ [Accessed:
04/08/20].

[17] Escape Room. (2019) [Film] Directed by ADAM ROBITEL. USA: Columbia Pictures.

[18] UNIT9 (2017) Jigsaw: Escape Room. [Online Image] Available from:
https://www.unit9.com/project/jigsaw-escape-room/ [Accessed: 04/08/20].

[19] Amino (2019) Escape Room. [Online Image] Available from:
https://aminoapps.com/c/horror/page/blog/escape-room-2019-movie-
review/8BwF_mu2NjWZjRxrnjKb28NK87gvgW6 [Accessed: 04/08/20].

[20] Parsec Productions (2012) Slender: The Eight Pages. [Online] Available from:
http://www.parsecproductions.net/slender/ [Accessed 05/08/20].

[21] Dads Gaming Addiction (2012) Beta or not, you will be on the edge of your seat. [Online Image]
Available from: https://www.dadsgamingaddiction.com/slender-the-eight-pages/ [Accessed:
05/08/20].

[22] PlayTogether Studio (2019) Mad Experiments: Escape Room. [Online] Computer. North America:
PlayTogether Studio.

[23] Gameplay Tips (2020) Silver key object interaction. [Online Image] Available from:
https://gameplay.tips/guides/7557-mad-experiments-escape-room.html [Accessed: 05/08/20].

[24] BALDALF, M. and FROHLICH, P. and ADEGEYE, F. and SUETTE, S. (2015) Investigating On-Screen
Gamepad Designs for Smartphone-Controlled Video Games. ACM Transactions on Multimedia
Computing Communications and Applications. [Online] 12 (22). Available from:
https://www.researchgate.net/publication/283283369_Investigating_On-
Screen_Gamepad_Designs_for_Smartphone-Controlled_Video_Games [Accessed: 06/08/20].

[25] Cyan Worlds (2017) realMyst. [Online] Mobile. South Saskatoon: Noodlecake Studios.

[26] Google Play (2017) realMyst. [Online Image] Available from:
https://play.google.com/store/apps/details?id=com.noodlecake.realmyst&hl=en_US [Accessed:
06/08/20].

[27] Fireproof Games (2013) The Room Two. [Online] Mobile. Guildford: Fireproof Games.

[28] POP, D-PAUL. And A, ALTAR. (2014) Designing an MVC Model for Rapid Web Application
Development. Procedia Engineering. [Online] 69. Available from:
https://www.sciencedirect.com/science/article/pii/S187770581400352X [Accessed: 07/08/20].

[29] StackExchange (2012) MVC Pattern. [Online Image] Available from:
https://softwareengineering.stackexchange.com/questions/136792/is-this-a-proper-
implementation-of-an-ios-mvc-pattern [Accessed: 07/08/20].

[30] Unity Technologies (2019) Unity. Version 2019.1.6f1 [Software] San Francisco: Unity
Technologies.

[31] KUMAR, G. and BHATIA, P. G (2012) Impact of Agile Methodology on Software Development
Process. International Journal of Computer Technology and Electronics Engineering (IJCTEE). [Online]
2 (Issue 2). Available from:
https://www.researchgate.net/publication/255707851_Impact_of_Agile_Methodology_on_Softwar
e_Development_Process [Accessed: 08/08/20].

[32] World Health Organization (2020) Coronavirus. [Online] World Health Organization. Available
from: https://www.who.int/health-topics/coronavirus#tab=tab_1 [Accessed: 08/08/20].

[33] Autodesk, Inc. (2018) Autodesk Maya. Version 2018 [Software] California: Autodesk, Inc.

[34] Unity (2020) Occlusion culling. [Online] Unity. Available from:
https://docs.unity3d.com/Manual/OcclusionCulling.html [Accessed: 08/08/20].

[35] Unity (2020) Draw call batching. [Online] Unity. Available from:
https://docs.unity3d.com/Manual/DrawCallBatching.html [Accessed: 08/08/20].

[36] Adobe, Inc. (2017) Adobe Photoshop. Version: CC 2017 [Software] California: Adobe, Inc.

[37] Agile Alliance (2020) Exploratory Testing. [Online] Agile Alliance. Available from:
https://www.agilealliance.org/glossary/exploratory-
testing/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experi
ence_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'exploratory*20testing))~searchT
erm~'~sort~false~sortDirection~'asc~page~1) [Accessed: 12/08/20].

[38] Sealights (2020) Understanding Agile Testing Methodology and 4 Agile Testing Methods.
[Online] Sealights. Available from: https://www.sealights.io/agile-testing/understanding-agile-
testing-methodology-and-4-agile-testing-methods/ [Accessed: 12/08/20].

[39] NOVOSELTSEVA, N (2019) 8 Benefits of Unit Testing. [Weblog] DZone. 30th August. Available
from: https://dzone.com/articles/top-8-benefits-of-unit-testing [Accessed: 12/08/20].

[40] RONGALA, R (2015) What is Black Box Testing: Advantages and Disadvantages. [Weblog]
Invensis. 9th March. Available from: https://www.invensis.net/blog/it/black-box-testing-advantages-
disadvantages/ [Accessed: 12/08/20].

[41] TESTBYTES (2019) Black Box Testing Techniques with Examples. [Weblog] testbytes. 25th
November. Available from: https://www.testbytes.net/blog/black-box-testing/ [Accessed:
12/08/20].

[42] Stackify (2020) What is code profiling? [Online] Stackify. Available from:
https://stackify.com/what-is-code-profiling/ [Accessed: 12/08/20].

[43] Microsoft Corporation (2019) Microsoft Visual Studio Community. Version: 16.5.5 [Software]
Washington: Microsoft Corporation

[44] Stackify (2017) OPP Concept in C# [Online] Stackify. Available from: https://stackify.com/oop-
concepts-c-sharp/ [Accessed: 12/08/20].

[45] Audacity Team (2015) Audacity. Version 2.1.1 [Software] Pennsylvania: Audacity Team

Game Assets

Tudor rose texture. Available from: https://www.freepik.com/free-photos-vectors/carpet-texture
[Accessed: 13/08/20].

Old man texture. Available from: https://commons.wikimedia.org/wiki/File:Michiel_Mierevelt_-
_Portrait_of_an_Eighty-Year_Old_Man_-_Google_Art_Project.jpg [Accessed: 13/08/20].

Rag man texture. Available from: https://www.oceansbridge.com/shop/artists/r/re-
res/rembrandt/portrait-of-an-old-man-15 [Accessed: 13/08/20].

Biblical man texture. Available from:
https://fr.m.wikipedia.org/wiki/Fichier:Bust_of_an_old_man_(1631),_by_Rembrandt_van_Rijn.jpg
[Accessed: 13/08/20].

Safe dial texture. Available from: https://www.shutterstock.com/image-vector/realistic-
combination-safe-lock-isolated-on-
465672989?irclickid=23i308RFHxyORZKwUx0Mo3EWUkiTJ9R1nxNLSQ0&irgwc=1&utm_medium=Affi
liate&utm_campaign=Ulugbek+Khalilov&utm_source=1425983&utm_term=&c3ch=Affiliate&c3nid=I
R-1425983 [Accessed: 13/08/20].

Red book texture. Available from: https://www.wallpaperflare.com/texture-tileable-seamless-book-
hard-cover-material-textured-wallpaper-gzelt [Accessed: 13/08/20].

Green book texture. Available from: https://lostandtaken.com/downloads/seamless-book-cover-
textures-5/ [Accessed: 13/08/20].

Blue book texture. Available from: https://lostandtaken.com/downloads/seamless-book-cover-
textures-7/ [Accessed: 13/08/20].

Crying boy texture. Available from: http://www.theparanormalguide.com/blog/the-curse-of-the-
crying-boys [Accessed: 13/08/20].

Blood splatter texture. Available from: https://toppng.com/blood-splatter-PNG-free-PNG-
Images_98902 [Accessed: 13/08/20].

Dragon disc texture. Available from: https://www.pngfuel.com/free-png/acyts [Accessed: 13/08/20].

Roof tile texture. Available from: https://architextur.es/textures/roof-tiles /
https://www.google.com/search?q=roof+tiles+texture&tbm=isch&ved=2ahUKEwidx4CAkfrpAhUkg
M4BHZlcBdMQ2-
cCegQIABAA&oq=roof+tiles+texture&gs_lcp=CgNpbWcQAzIECCMQJzICCAAyAggAMgIIADICCAAyAgg
AMgIIADICCAAyAggAMgIIAFDrCFjrCGC3CmgAcAB4AIABUogBUpIBATGYAQCgAQGqAQtnd3Mtd2l6L
WltZw&sclient=img&ei=KlXiXp0KpIC6vg-ZuZWYDQ&bih=938&biw=1920#imgrc=xHtReXh5JJbI7M
[Accessed: 13/08/20].

Dragon poster texture. Available from: https://www.pinterest.co.uk/pin/494270127827607890/
[Accessed: 13/08/20].

Chinese cloth texture. Available from: https://www.etsy.com/no-en/listing/263496561/chinese-
new-year-decorations-big-fu [Accessed: 13/08/20].

Demonic eyes texture. Available from:
https://www.clipartmax.com/middle/m2H7K9Z5K9i8m2m2_eyes-demon/ [Accessed: 13/08/20].

Handprint texture. Available from: https://www.onlygfx.com/5-black-handprints-png-transparent/
[Accessed: 13/08/20].

Book page one texture. Available from: https://www.pngwing.com/en/free-png-
kawjc#google_vignette [Accessed: 13/08/20].

Music sheet texture. Available from: http://clipart-library.com/clipart/n1137638.htm

Wall scratch texture. Available from: https://www.nicepng.com/ourpic/u2q8e6i1q8y3o0e6_scratch-
marks-png-picture-black-and-white-library/ [Accessed: 13/08/20].

Speaker mesh texture. Available from: https://www.freepik.com/free-photo/speaker-grill-texture-
background_1190160.htm [Accessed: 13/08/20].

Girl on rocks texture. Available from: https://www.treksplorer.com/best-travel-backpacks-for-
women/ [Accessed: 13/08/20].

Mansion texture. Available from: https://www.pinterest.co.uk/pin/763078730583306478/
[Accessed: 13/08/20].

Lightning texture. Available from: https://www.dreamstime.com/silhouette-lightning-grunge-black-
lightnings-over-white-background-image134599478 [Accessed: 13/08/20].

Trees texture. Available from: http://clipart-library.com/clip-art/silhouette-of-forest-4.htm
[Accessed: 13/08/20].

Male silhouette texture. Available from: https://www.shutterstock.com/video/clip-3005101-
silhouette-man-walking [Accessed: 13/08/20].

Rain texture. Available from: https://www.cleanpng.com/png-rain-icon-floating-rain-
395005/preview.html [Accessed: 13/08/20].

Cracked wall normal map. Available from: https://za.pinterest.com/pin/122160208625470109/
[Accessed: 13/08/20].

Squared carpet normal map. Available from: https://www.filterforge.com/filters/13121-normal.html
[Accessed: 13/08/20].

Large cracks normal map. Available from: https://www.filterforge.com/filters/9691-normal.html
[Accessed: 13/08/20].

Scratched metal normal map. Available from: https://www.filterforge.com/filters/7957-normal.html
[Accessed: 13/08/20].

Rusty metal normal map. Available from: https://www.filterforge.com/filters/10523-normal.html
[Accessed: 13/08/20].

Canvas paint normal map. Available from: https://everytexture.com/everytexture-com-stock-paint-
texture-00033/ [Accessed: 13/08/20].

Seamless grass normal map. Available from:
https://www.sketchuptextureclub.com/textures/nature-elements/vegetation/green-grass/clover-
grass-texture-seamless-18848 [Accessed: 13/08/20].

Water pattern normal map. Available from:
https://www.pinterest.co.uk/pin/627055948096477798/ [Accessed: 13/08/20].

Grass pattern normal map. Available from:
https://unrealmethodscom.wordpress.com/2015/11/18/creating-ue4-terrain-with-world-machine-
part-iv-final-adding-details-to-the-terrain/ [Accessed: 13/08/20].

Rock pattern normal map. Available from: https://everytexture.com/everytexture-com-stock-rocks-
texture-00023/ [Accessed: 13/08/20].

Seamless lava video texture. Available from: https://www.youtube.com/watch?v=o_Xx2cFKMbI
[Accessed: 13/08/20].

Crooked man video texture. Available from: https://www.youtube.com/watch?v=aDsUyuE83do
[Accessed: 13/08/20].

Dragon model. Available from: https://www.turbosquid.com/FullPreview/Index.cfm/ID/1036048
[Accessed: 13/08/20].

Temple symbol model. Available from:
https://www.turbosquid.com/FullPreview/Index.cfm/ID/1054569 [Accessed: 13/08/20].

Piano key model. Available from: https://free3d.com/3d-model/piano-166.html [Accessed:
13/08/20].

Face mask model. Available from: https://free3d.com/3d-model/mask-from-the-film-who-am-i-
51027.html [Accessed: 13/08/20].

Microphone model. Available from: https://free3d.com/3d-model/microphone--52251.html
[Accessed: 13/08/20].

Sculpture model. Available from: https://free3d.com/3d-model/face-sculpture-on-stick-87277.html
[Accessed: 13/08/20].

Desk model. Available from: https://free3d.com/3d-model/-office-desk-v3--821728.html [Accessed:
13/08/20].

Telephone model. Available from: https://www.turbosquid.com/3d-models/3d-landline-telephone-
1419155 [Accessed: 13/08/20].

Desk lamp model. Available from: https://free3d.com/3d-model/older-lamp-28459.html [Accessed:
13/08/20].

Clipboard model. Available from: https://www.turbosquid.com/3d-models/free-c4d-model-simple-
clipboard/856589 [Accessed: 13/08/20].

Theme song audio. Available from: https://www.youtube.com/watch?v=ziQ9GURNrUg [Accessed:
13/08/20].

Thunder and lightning audio. Available from: https://www.youtube.com/watch?v=10rH37YYvKU
[Accessed: 13/08/20].

Button click audio. Available from: https://www.youtube.com/watch?v=O7Gvrug_bko [Accessed:
13/08/20].

Squeaking door audio. Available from: https://www.youtube.com/watch?v=NTds-Wtw3Wg
[Accessed: 13/08/20].

Whoosh transition audio. Available from: https://www.youtube.com/watch?v=rvaTKOpRxlQ
[Accessed: 13/08/20].

Scene theme audio. Available from: https://www.youtube.com/watch?v=XC3Pdi8K-Cs&t=450s
[Accessed: 13/08/20].

Torch click audio. Available from: https://freesound.org/people/dersuperanton/sounds/435845/
[Accessed: 13/08/20].

Light buzz audio. Available from: https://www.youtube.com/watch?v=FYUs2rJAQvo [Accessed:
13/08/20].

Picture frame slide audio. Available from: https://www.youtube.com/watch?v=7cAnlZ1U1Mg
[Accessed: 13/08/20].

Picture frame impact audio. Available from: https://www.youtube.com/watch?v=13aOApJL2yY
[Accessed: 13/08/20].

Safe door open audio. Available from: https://www.youtube.com/watch?v=yAxYuCCJp7Y [Accessed:
13/08/20].

Safe dial correct number, safe dial rotate clank, safe dial next number audio. Available from:
https://www.youtube.com/watch?v=wwV23GKsAu0 [Accessed: 13/08/20].

Safe reset lock audio. Available from: https://freesound.org/people/ingudios/sounds/119494/
[Accessed: 13/08/20].

Safe dial wrong direction audio. Available from: https://www.youtube.com/watch?v=ILtw7SKMjCQ
[Accessed: 13/08/20].

Boy screaming audio. Available from: https://www.youtube.com/watch?v=jNk6_4jMHW0 [Accessed:
13/08/20].

Item obtained audio. Available from: https://www.youtube.com/watch?v=ILtw7SKMjCQ [Accessed:
13/08/20].

Place table key audio. Available from: https://www.youtube.com/watch?v=fm3VjiF5Zg8 [Accessed:
13/08/20].

Lava pit audio. Available from: https://www.youtube.com/watch?v=CKUOEvkelhM [Accessed:
13/08/20].

Country marker light audio. Available from: https://freesound.org/people/ascap/sounds/242431/
[Accessed: 13/08/20].

Evil laugh audio. Available from: https://www.youtube.com/watch?v=f3BPx2lt6E0 [Accessed:
13/08/20].

Man screaming audio. Available from: https://www.youtube.com/watch?v=bhr0NWMfl4E
[Accessed: 13/08/20].

Draw knife audio. Available from: https://www.youtube.com/watch?v=QEft2eUqKpE [Accessed:
13/08/20].

Knife stab audio. Available from: https://www.youtube.com/watch?v=VOcf3ChmWtQ [Accessed:
13/08/20].

Error buzzer audio. Available from: https://motionarray.com/sound-effects/transition-sound-effects-
free-130337 [Accessed: 13/08/20].

Knife pick-up audio. Available from: https://www.youtube.com/watch?v=DBpf5a1L_9E [Accessed:
13/08/20].

Corridor footsteps audio. Available from: https://www.youtube.com/watch?v=spDzJCAL5lk&t=10s
[Accessed: 13/08/20].

Door open echo audio. Available from: https://www.youtube.com/watch?v=eXZd094EYus
[Accessed: 13/08/20].

Girl grunt audio. Available from: https://www.videvo.net/sound-effect/adult-female-painful-grunt-
02/393948/ [Accessed: 13/08/20].

Punch picture impact audio. Available from: https://www.zapsplat.com/sound-effect-
category/wood/page/9/ [Accessed: 13/08/20].

Music box picture impact loud, music box picture impact soft audio. Available from:
https://www.zapsplat.com/sound-effect-category/wood/page/9/ [Accessed: 13/08/20].

Player jump audio. Available from: https://www.videvo.net/sound-effect/adult-female-exertion-
grunt-01/393938/ [Accessed: 13/08/20].

Player traversal audio. Available from: https://www.videvo.net/sound-effect/adult-female-heavy-
panting-and-breathing/393941/ [Accessed: 13/08/20].

Player idle inhale audio. Available from: https://www.videvo.net/sound-effect/whoosh-female-
breth-sdt032105/261731/ [Accessed: 13/08/20].

Player idle exhale audio. Available from: https://www.videvo.net/sound-effect/whoosh-female-
breth-sdt032104/261730/ [Accessed: 13/08/20].

Player footsteps audio. Available from: https://www.videvo.net/sound-effect/footsteps-wood-floor-
pe287503/244726/ [Accessed: 13/08/20].

Music box placed impact audio. Available from: https://www.videvo.net/sound-effect/metal-wood-
hits-debri-fs021401/251568/ [Accessed: 13/08/20].

Carousel music chime audio. Available from: https://www.youtube.com/watch?v=YaeHtp0Pp4o
[Accessed: 13/08/20].

Carousel button pressed audio. Available from: https://www.videvo.net/sound-effect/switch-on-
antique-button-pehd086303/258134/ [Accessed: 13/08/20].

Carousel clacking audio. Available from: https://www.videvo.net/sound-effect/floppy-drive-spinnin-
pe412301/244371/ [Accessed: 13/08/20].

Carousel shaking audio. Available from: https://www.videvo.net/sound-effect/door-rattle-
05/416954/ [Accessed: 13/08/20].

Music box chime audio. Available from: https://www.youtube.com/watch?v=u9WsZoceais
[Accessed: 13/08/20].

Handprint scare audio. Available from:
https://www.youtube.com/watch?v=TTQ8Oh_aBiA&list=PLcSgqX6WCxoh9eIZ5bNIWTNAQlTb8tH7C
&index=8 [Accessed: 13/08/20].

Gate creak open audio. Available from:
https://www.youtube.com/watch?v=AQ1SE4tLICg&list=PL634EA6C284405875&index=74 [Accessed:
13/08/20].

Chase theme audio. Available from: https://www.youtube.com/watch?v=nEuXiJ-d2YM [Accessed:
13/08/20].

Evil man grunt one audio. Available from: https://www.videvo.net/sound-effect/human-grunt-
25/428355/ [Accessed: 13/08/20].

Evil man grunt two audio. Available from: https://www.videvo.net/sound-effect/human-grunt-
39/428369/ [Accessed: 13/08/20].

Evil man roaming chime audio. Available from: https://www.youtube.com/watch?v=zclD93VnpEw
[Accessed: 13/08/20].

Evil man grunting audio. Available from: https://www.videvo.net/sound-effect/male-breaths-
labored-az174802/250568/ [Accessed: 13/08/20].

Piano lid creak audio. Available from: https://www.videvo.net/sound-effect/creak-hinge-01/413534/
[Accessed: 13/08/20].

Piano lid impact audio. Available from: https://www.videvo.net/sound-effect/piano-hit/435856/
[Accessed: 13/08/20].

Piano key scrape audio. Available from: https://www.videvo.net/sound-effect/piano-scrape-
07/435868/ [Accessed: 13/08/20].

Wardrobe knocking audio. Available from: https://www.videvo.net/sound-effect/knocking-on-wood-
door-fist-pehd097902/249148/ [Accessed: 13/08/20].

Wardrobe door squeak audio. Available from: https://www.videvo.net/sound-effect/door-wood-
69/417204/ [Accessed: 13/08/20].

Insert wind-up key audio. Available from: https://www.videvo.net/sound-effect/switch-breaker-
03/442890/ [Accessed: 13/08/20].

Insert latch key audio. Available from: https://www.videvo.net/sound-effect/switch-click-vo5850-
pe1090808/258076/ [Accessed: 13/08/20].

Latch key unlock audio. Available from: https://www.videvo.net/sound-effect/35mm-camera-click-
wi-pe1012702/233828/ [Accessed: 13/08/20].

Lid hinge propped open audio. Available from: https://www.videvo.net/sound-effect/switch-small-
toggle-04/442849/ [Accessed: 13/08/20].

Place disc audio. Available from: https://www.videvo.net/sound-effect/metal-impacts-dull-
fs010301/251285/ [Accessed: 13/08/20].

Align disc needle audio. Available from: https://www.videvo.net/sound-effect/latch-swing-close-
squeak-door-secur-pehd047102/249424/ [Accessed: 13/08/20].

Light switch on audio. Available from: https://www.videvo.net/sound-effect/light-switches-click-
pe803705/249818/ [Accessed: 13/08/20].

Light switch off audio. Available from: https://www.videvo.net/sound-effect/light-switches-click-
pe803703/249816/ [Accessed: 13/08/20].

Place book audio. Available from:
https://www.soundsnap.com/search/audio/wood%20impact/score [Accessed: 13/08/20].

Turn page audio. Available from: https://www.videvo.net/sound-effect/book-large-23/406530/
[Accessed: 13/08/20].

Book cover impact audio. Available from: https://www.videvo.net/sound-effect/book-hardcover-
01/406619/ [Accessed: 13/08/20].

Strobe light flash audio. Available from: https://www.videvo.net/sound-effect/camera-flash-pot-go-
crt2014603/238304/ [Accessed: 13/08/20].

Paper impact audio. Available from: https://www.videvo.net/sound-effect/target-hit-light-pap-
pe1108506/258688/ [Accessed: 13/08/20].

Piano chime audio. Available from: https://www.youtube.com/watch?v=XUXsKOkhoFM [Accessed:
13/08/20].

Door unlock audio. Available from: https://www.videvo.net/sound-effect/wood-chair-scrape-
pe1013803/262133/ [Accessed: 13/08/20].

Telephone ringing audio. Available from: https://www.videvo.net/sound-effect/phone-ring-digital-
am-ee114901/253237/ [Accessed: 13/08/20].

Telephone error tone audio. Available from: https://www.videvo.net/sound-effect/telephone-hang-
up-dial-tone-l-pe598704/258946/ [Accessed: 13/08/20].

Telephone pick-up, telephone hang-up audio. Available from: https://www.videvo.net/sound-
effect/telephone-p-u-hang-up-rotary-p-pe596204/258979/ [Accessed: 13/08/20].

Glass break audio. Available from: https://www.videvo.net/sound-effect/glass-small-break-
pe1051017/245631/ [Accessed: 13/08/20].

Telephone outbound call audio. Available from: https://www.videvo.net/sound-effect/telephone-
ring-tone-pe598801/258991/ [Accessed: 13/08/20].

Women struggling audio. Available from: https://www.videvo.net/sound-effect/adult-female-
struggling-grunts/393981/ [Accessed: 13/08/20].

Telephone dropped audio. Available from: https://www.videvo.net/sound-effect/telephone-drop-
01/444731/ [Accessed: 13/08/20].

Evil man laughing telephone audio. Available from: https://www.videvo.net/sound-effect/laugh-evil-
old-man-pe974801/249434/ [Accessed: 13/08/20].

Telephone suspense audio. Available from: https://www.youtube.com/watch?v=0vKMa7-yAQg
[Accessed: 13/08/20].

Telephone disconnected tone audio. Available from: https://www.videvo.net/sound-effect/brit-
telephone-number-unobt-pe594501/237375/ [Accessed: 13/08/20].

Appendices

Appendix A:

Literature Review

Introduction

In relation to my study focus of three-dimensional puzzler games for mobile platforms, I am
conducting a series of literature reviews to better inform my decisions for developing my proposed
game; from which, I aim to gain an understanding for what is considered similar and different within

existing games across the genre. Similarities between games are often referred to as “genre
conventions”, whereby, games bound by the same genre typically focus upon “mechanics and game
design patterns that deliver a particular play experience” [1]. Incorporating genre conventions that
can be identified across multiple games, would purpose for my game to have an establishment
within the puzzle game genre and therefore provide a sense of “familiarity” [1] for players.
Meanwhile, implementing techniques that are not considered generic or common, would enable my
game to be considered unique and innovative; this can be achieved by identifying game design
similarities and differentiating from them, examples being the “theme and game objective”. These
game design components are considered “separate from genre” according to Tulia-Maria [1].
Providing a sense of differentiation could also increase the level of game immersion for players, in
which, players may find “events in the story” of the game less ‘predictable’ [1]. In acknowledgement
of these research objectives, the literature reviews will make attempt to provide focus upon the
puzzle game genre, as my reporting and development focus. To note, there is a lack of academic-
based literature available, to accommodate for this research focus entirely.

Throughout the reviews of each literature piece, I will specifically explore the various aspects of
mobile puzzler games in respect of aesthetics, mechanics, narrative, user interface (UI) and level
design; for which, I believe to be the fundamental game design concepts. Existing games will be
explored to discuss these concepts mostly, for which, my methodology is to “find the common
components in the games that are used to exemplify the genre” [2]. Moreover, I also intend to
explore films to help navigate the narrative, level design and aesthetic components of my game;
whereby, the proposed theme of the game aims to resemble a sinister and mystery type setting
throughout. My intentions for the theme, are to encourage suspenseful and slowed gameplay to
inspire players to interact with their environments cognitively; for such, techniques used within the
thriller and mystery genres of film, will be explored to reinforce the theme I am intending to create.
As the theme of my game focuses predominantly upon player emotion, I will further investigate the
effects that such games pose, on player emotions.

Reviewing literature

As my initial source of interest, I had wanted to explore the design aspects of video games bound by
the puzzle genre. As referred to previously, understanding the design aspects the ‘genre exemplifies’
[2], enables the identification of “genre conventions” [1]; for my game to be recognised as a
production of the genre, it requires to adopt some of the techniques recurring in existing puzzle
games. For which, the article “The study of Principles of Puzzle Game Design” [3] explores the
principles of puzzle game design in focus of “graphics”, “sounds”, “interaction and feedback” as well
as “storylines and gameplay”. Regarding “graphics”, the article explores the application of images
within puzzle games to take into consideration of the “size of the images” [3], in relation to player
restraints on the ability to see images clearly and to see other world spaces; the scaling of images is
thereby considered to be a significant design concept. The mobile puzzle game series ‘The Room’ [4],
attempts to visualise environments scaled to the real-world and makes use of images that are
centric to puzzle resolution; the series achieves image clarity from the use of the movement
mechanics of a single camera, that can be controlled to increase the focus level on image detailing
within the game world.

Moreover, in relation to audio elements of puzzle game design, the authors describe the application
of “sounds or background music” to “match the games” [3] and expands to mention the
requirement of audio to be suited to all players. Within the context of my proposed game, audio will
be suited to allow progression in gameplay for players in any culture or environment; multicultural
agility has to be addressed, therefore linguistic audio will be excluded. This technique is also
applicated within The Room series [4] also, whereby the prominence of sound is exemplified in the
forms of backgrounding music, as well as interactive and transitional sound effects [6]. Furthermore,
in focus of player interaction and feedback, the article describes the “most important principle” to
be the friendliness of the games interface [3]; this takes into consideration the clarity of the games
objectives, the order of which the objectives are presented in ‘logically’, the appearance of the
interface, the ease of understanding game mechanics and the possibility of players being able to
determine the pace of gameplay. In essence, the authors refer to the simplification of game
interaction, for a more comprehensive player experience. In relation to my proposed game, as a
mobile-based game, interaction intends to be communicated through the means of buttons, as well
as screen tap orientated input on game world objects; buttons will collectively form the user
interface for the game. From the implementation of said game interaction, dictates a range of easy
to understand game mechanics for players. Meanwhile, the order in which puzzles can be solved,
intends to be sequential and portray linearity; this is to maintain player cognition and avoid
deterring the player from any fabricated frustration. However, as previously mentioned, the game
theme intends to control the players pace of gameplay, as opposed to players controlling the “pace
of the game” [3]; in which, players will be encouraged to play slowly. Within ‘The House of Da Vinci’
series, game interactions are considered to be simple from the requirement of finger swipe or tap
gestures and are enhanced by the use of recurring mechanics also [7]. An exampling game
interaction that satisfies this claim, is the rotary mechanism of objects; which is typically controlled
by circular finger swipe motions [8]. Moreover, the appearance of the game’s user interface can also
be considered simple; this is due to the lack of buttons that enables it to be easily navigable.

Image 1: The Room, camera focus upon a letter for image readability [5]

Lastly, in focus of the narrative element of puzzle game design, the article presents “storylines and
gameplay” to “offer information for the players”, such information is presented as the “main
purpose” of puzzle games [3], as the authors describe. In which, the concept of ‘storylines’ is
discussed further as the ‘creator of game situations’; which allows for “goals and challenges” to be
implemented and for players to attempt and “achieve” them [3]. Meanwhile, the authors refer to
“gameplay” as the process in which players ‘interact’ with the puzzle components within games and
become ‘entertained’ from doing so; the article concludes the purpose of puzzle games, for the
production of “challenges and interesting interactions” [3]. In further relation to both The Room
series [4] and The House of Da Vinci [7] series of games, the “storylines” introduce “goals and
challenges” through the occurrences of cutscenes [10]; these are typically queued, when players
overcome the preceding “challenges” [3] in a single area of the game world, or are simply introduced
to a new environment or story event. Cutscenes purpose for the transition between “game
situations”, which allows for newer “goals and challenges” [3] to be presented to players, linearly.
Meanwhile, the concept of ‘information offering’ is typically provided through the means of letters
[5] throughout the game world, as well as prompting players with clues.

Image 2: The House of Da Vinci, showcasing the games graphical user interface [9]

Image 3: The Room, player prompted with a clue for the use of a found object [11]

Moreover, the “gameplay” element [3] across the games is presented through the interaction with
static and obtainable objects; individually, each object represents to be a component of a puzzle, but
when the objects are interacted with in a specific sequence, players can achieve the “goal” [3], being
puzzle resolution.

Concluding my findings of the article, it is inevitable that the “graphics”, “sounds”, “interaction and
feedback” as well as “storylines and gameplay” [3], are significant puzzle game design aspects that
need to be considered when producing my own game. It is further apparent that the intricacies of
images and audio, can determine whether a player can or cannot progress through a game. As well,
the order of game events poses a significance for player cognition; narrative and interaction within
my game, therefore requires some form of linearity in the sequence of presenting game events.
However, my findings of puzzle game design aspects are conceptual, in which, the authors discuss
puzzle game design superficially; the lack of exampling techniques that each of the concepts employ,
is a limitation of this paper, hence the need for exemplifying said concepts in existing puzzle games.

For my second source of interest, I wanted to investigate the affect that game elements have upon
player emotions; as previously mentioned, suspense is the focal emotion I am wanting to engage
throughout the theme of the game. For which, the article “Optimizing Player and Viewer
Amusement in Suspense Video Games” explores suspense, as an emotion that can be achieved in
games through signalling “the location of a threat” to players; this concerns the amount of
“information provided to the audience” [12], to achieve such. In relation to suspense, the authors
describe “suspenseful narratives” to typically adopt “first or third-person” camera perspectives, so
that players have “the same visual and audible information as the main character” [12]; this
technique can be seen within the horror game ‘Slender: The Eight Pages’ [13].

Moreover, the article continues to explore suspense simulation in video games, in similarity of film
productions. In which, the article discusses player experience to involve aspects of “exploration”,
"traps”, “persecution” and “claustrophobic environments” [12]. All of which aspects of player
experience, reside within Slender[13] and both The Room [4] and The House of Da Vinci [7] game
series’.

Image 4: Slender: The Eight Pages, first-person camera perspective [14]

In further scope, a film which exemplifies all of these aspects is ‘Jigsaw’ [18], which presents the
narrative of people imprisoned within “claustrophobic environments”, to escape, they are required
to ‘explore’ and solve a series of puzzles in the forms of “traps” [12]. Furthermore, the authors
describe “suspenseful situations” to be communicated to players, via the application of “visual
images, text, music, speech and environmental effects”; of which, sounds are said to be better
suited to signally a “situation” before a player is able to “see it” [12]. The article continues to
comment that ‘changing sounds’ or ‘visually modifying the environment’, ‘are strategies typically
used in suspenseful video games’ [12]. In which case, many of the exemplified games [4] [7] [13] and
films [18] [19] adopt low-key lit environments and dark colour pallets to heighten “frightening cues
that increase the emotional response, without the need of changing the viewport” [12]; this is a
recurring concept I want to implement within my production. Moreover, relating to sounds, sounds
typically change in dynamic throughout films [18] [19] and games [4] [7] [13], the authors claim that
“finding the right moment to provide the information” is essential for developing players “expected
emotional response” [12]. Furthermore, information provided to players is considered conversely in
respect of players becoming “stressed” when “a lack of information” is given; this infers increasing
player challenge but increase in “level of suspense” also [12].

In summary of my findings, the authors have informed the ways in which suspense is orchestrated
within video games and the techniques that can be used to fabricate an “emotional response” [12]
from players. Additionally, the article and exemplifying sources have explored game design choices
in regard to level design, narrative development, and aesthetics; in which, discussions regarding
“suspenseful narratives” [12], has mostly informed me with considerations for my own game.
Although the articles focus is predominantly upon the horror game genre, the authors do not
concern the interactive mechanics of horror games; but alternatively, the aspects of game “theme
and game objective” [1], this thereby fulfils its usefulness for this investigation and poses no
restraints on relevance to my own production.

References

[1] CASVEAN, T.P. (2015) An Introduction to Videogame Genre Theory. Understanding Videogame
Genre Framework. Athens Journal of Mass Media and Communications. [Online] Vol. 2. (Issue 1).
Available from: https://www.semanticscholar.org/paper/An-Introduction-to-Videogame-Genre-
Theory.-Genre-C%C4%83%C8%99vean/4dd13db214c63cd19c9d0e97df098170dd75dbc0 [Accessed
17/12/19].

[2] BJORK, S. and HOLOPAINEN, J. and LUNDGREN, S. (2003) Game Design Patterns. In: Digital Games
Research Conference, The Netherlands, November 2003. Rockland: Charles River Media, p. 4.

Image 6: The Room: Old Sins,
environment [16]

Image 5: The House of Da Vinci,
environment [15]

Image 7: Slender: The Eight Pages,
environment [17]

[3] ZHOU, Z. and WU, L. (2012) The Study of Principles of Puzzle Game Design. In: 2012 International
Symposium on Information Technologies in Medicine and Education, Japan, August 2012. Hokkaido:
IEEE, pp. 1-2.

[4] Fireproof Games (2012) The Room. [Online] Mobile. Guildford: Fireproof Games.

[5] GameZebo (2013) The Room Walkthrough. [Online] Available from:
https://www.gamezebo.com/2013/09/03/room-walkthrough-cheats-strategy-guide/ [Accessed
17/12/19].

[6] Techzamazing (2015) The Room Three (iOS/Android) Gameplay Walkthrough - Part 1. [Online
film] Available from: https://www.youtube.com/watch?v=XFl93xkH75M [Accessed 17/12/19].

[7] Blue Brain Games (2017) The House of Da Vinci. [Online] Mobile. Bratislava: Blue Brain Games.

[8] Techzamazing (2017) The House Of Da Vinci - Walkthrough Gameplay (iOS / Android / STEAM)-
PART 1. [Online film] Available from: https://www.youtube.com/watch?v=KAYk8F3wo5E&t=538s
[Accessed 17/12/19].

[9] Adventure Gamers (2018) The House of Da Vinci. [Online] Available from:
https://adventuregamers.com/articles/view/34525 [Accessed 17/12/19].

[10] Techzamazing (2019) The House of Da Vinci 2 Gameplay Walkthrough (Android, iOS, Steam) -
Part 1. [Online film] Available from: https://www.youtube.com/watch?v=YOG1pJ5okXI [Accessed
18/12/19].

[11] PRASAD (2012) ‘The Room’ for iPad game review. [Weblog] BLOG.GSMARENA. 7th October.
Available from: http://blog.gsmarena.com/the-room-for-ipad-game-review/ [Accessed 18/12/19].

[12] DELATORRE, P. and LEON, C. and HIDALGO, A.S. and TAPSCOTT, A. (2019) Optimizing Player and
Viewer Amusement in Suspense Video Games. IEEE Access. [Online] Vol. 7. Available from:
https://ieeexplore.ieee.org/document/8742555 [Accessed 18/12/19].

[13] Parsec Productions (2012) Slender: The Eight Pages. [Online] Available from:
http://www.parsecproductions.net/slender/ [Accessed 18/12/19].

[14] WYCISLIK-WILSON, M. (2017) Slender: The Eight Pages review. [Weblog] techradar. 27th July.
Available from: https://www.techradar.com/uk/reviews/pc-mac/software/slender-the-eight-pages-
review-1326593/review [Accessed 18/12/19].

[15] AppUnwrapper (2017) ‘The House of Da Vinci’ Review: This Seems Familiar. [Weblog]
AppUnwrapper. 25th June. Available from: https://www.appunwrapper.com/2017/06/25/the-
house-of-da-vinci-review/ [Accessed 18/12/19].

[16] REEVES, B. (2018) The Room: Old Sins. [Weblog] gameinformer. 23rd January. Available from:
https://www.gameinformer.com/games/the_room_old_sins/b/ios/archive/2018/01/23/the-room-
old-sins-game-informer-review.aspx [Accessed 18/12/19].

[17] GAME FRONT (2012) Game Front Primer: Everything You Need for Slender: The Eight Pages.
[Online] Available from: https://www.gamefront.com/games/gamingtoday/article/game-front-
primer-everything-you-need-for-slender-the-eight-pages [Accessed 18/12/19].

[18] Jigsaw. (2017) [Film] Directed by MICHAEL SPIERIG and PETER SPIERIG. USA: Twisted Pictures.

[19] Insidious: Chapter 2. (2013) [Film] Directed by JAMES WAN. USA: Blumhouse Productions

Appendix B:

Software functional requirements

Functional requirements of software applications represent the requirements of software
component functionality, behaviourally. Outlining functional requirements of software is necessary
for ensuring that users of the software can accomplish tasks, in use of it. In context of video games
and most of all my production focus, a puzzle game, there can only be one user type, a player. The
requirements of the software therefore purpose to enable a player to complete all of the set
objectives throughout the game; this enables players to reach their goal. This document aims to
identify the functional requirements of my production and provide insight into the way in which
players can use the software.

Game overview

‘Under Lock and Key’ proposes to be a three-dimensional puzzle game, that can be viewed from the
first-person and third-person perspectives. The basis of the game pursues the narrative of the
playing character, who becomes captured and then imprisoned within a house-type environment;
inside each room accessible to the player, features a series of interconnected puzzle components.
Players are required to explore and interact with their environments, to solve all of the puzzles
within every accessible room. For every room that is completed by the player, nears them to
escaping the prison. Each room represents a level to note.

Basic functional requirements of the game

The basic functional requirements of the software application revolves around a player’s ability to
interact with menus and initial scenes, which enables a game to be in a state of play or
configuration. The following content lists these requirements.

Functional requirements

 The application will allow a user to be a player
 The application will allow a player to start a game session
 The application will allow a player to pause the state of a game session
 The application will allow a player to toggle the active state of subtitling
 The application will allow a player to exit a game session
 The application will allow a player to transition between the game’s scenes

Functional requirements of game scenes

The functional requirements of the game’s scenes, purposes to outline the ways in which scenes are
designed to enable a player to interact with objects within their environments and complete

objectives. For which further allows players to approach the end goal of the game: escape. The
following content lists these requirements.

Functional requirements

 The scenes will allow the presence of interactable game objects
 The scenes will allow the presence of non-interactable game objects
 The scenes will allow the presence of plains to surface the game objects
 The scenes will allow the presence of a player-controlled game object
 The scenes will allow the presence of numerous player-controlled camera objects
 The scenes will allow the presence of game physics, provided by the existence of game

object collider and rigid body components
 The scenes will each represent a level, excluding the menu and initial game scenes
 The scene will allow the presence of non-linguistic audio, in the forms of instrumental music

and sound effects
 The scenes will allow the presence of light objects, to ensure the visibility of each scene
 The scenes will allow the presence of user interface objects, to enable the movement and

interaction of player-controlled and interactable game objects
 The scenes will allow the presence of text overlaying, to linguistically represent sound

effects in the form of subtitles

Functional requirements for the player of the game

The functional requirements of the game in relation to the player, determines how a player is able to
control and introduce an interaction with objects within their environments, with the aims of
attempting to complete the games objectives. The following content lists these requirements.

Functional requirements

 The player-controlled game object can traverse in the facing direction of the active camera
object, when the corresponding user interface buttons are interacted with

 The player-controlled game objects facing direction can be adjusted, when the
corresponding user interface buttons are interacted with

 The player-controlled game object can interact with interactable objects, when within the
required proximity of these objects, through touch, hold and swipe interactions

 The player-controlled game object should remain upright, in the event of colliding with other
game objects

 The player-controlled game object should not be able to leave the intended area of play,
unless all of the events within the current level are recognised as being complete (puzzle
logic)

Software use cases

Software use cases exist for describing the relation between the way software applications are
interacted with, by external users. The focus of software use cases is to illustrate the ways in which
users can achieve particular goals and the requirements of the software to enable such. In context of
my production, the following section of content will outline player relationships with my game
proposal, in attempt of showcasing the software’s functional requirements, as specified above.

User case: loading screen scene interaction

User case: initial scene interaction

User case: level scene interaction

Appendix C:

Methodology of testing

The purpose for testing, suits the requirement of acknowledging proper functionality within
software applications. In the scope of my project proposal, a mobile based game, a series of test
cases will be conducted to ensure that the software meets its technical and functional expectations.
Thereby, the purpose of this document is to describe and illustrate the testing strategy of the
software outlined; the document will provide indicative test cases upon the initial software setup, to
provide insight into how test scenarios are orchestrated and therefore measured.

Test objectives

In relation to testing objectives, the mobile game will be tested in validation of gameplay quality, as
well as application reliability, usability, and performance. For which, testing will conform to unit,
Blackbox and performance profiling, testing approaches; these methods are suited for testing both a
software’s internal and external design. As previously mentioned, the software testing will be
tailored to the games technical and functional requirements.

In relation to quality testing of the software, the game will be tested in accordance with its
expectations of being bug-free, to enable the best gameplay experience for players possible. The
nature of these tests will predominantly be focused upon the mechanism components of the game.
Meanwhile, relating to application reliability, usability and performance, the game will be tested in
relevance of performance profiling; this serves to provide players with a stable and therefore
enjoyable gameplay experience. This provides emphasis on the management of graphical
representation and vastness of level design for the game.

Test strategy

Regarding the development of my software piece, I have chosen to adopt the Agile methodology of
software development, SCRUM, to enable constant and gradual inspection and adaptation to the

software, in the form of sprints. This allows for me to remain comprehensive about the application I
am developing and aims to increase the quality of my software deliverable.

In correspondence to testing, I am similarly going to adopt an Agile software testing methodology;
the purpose of this methodology is to align the testing processes with the development processes of
the software. In which, I propose that the game is tested compositionally, after each component is
implemented within the game; this enables the code base of the game to be more robust and bug-
free, as the games development becomes increasingly expansive. Moreover, in respect of future
development, as defective functionality can be detected and removed gradually, the code base of
the software will be enabled to be simplified and easier to interpret. I believe that this strategy of
testing will be better suited for locating functionality defects and performance consumption issues,
progressively; in which, the most recent implementation would indicate to be the most probable
cause for error.

In relation to the testing methodology, I have selected exploratory testing as my testing basis. For
which, exploratory can be used for testing the expected behaviours and functionality of software
components, throughout its development. Test cases are not typically configured in advance of
developing software functionality and are instead designed and executed simultaneously. This
allows for the code base of software to be refactored, to enable aspects of the software to behave
as expected, which can be determined from the pass rate of the test cases produced. It can also be
considered beneficial for discovering component errors, that other testing techniques may ignore.

Blackbox testing

Purpose of Blackbox testing

Blackbox testing is a software testing technique which focuses on application behaviour and
performance; the code base of a given application is not known and so the functionality of a given
application is determined to be working correctly, incorrectly or not working from a visual basis. This
is measured from differences observed in application output, from calling various inputs in the
application, differences in application output are subject to the working functionality of the inputs to
note.

In relation to the mobile game as a piece of software, Blackbox testing enables the identification of
lacking and non-functioning game mechanics at a surface level; as there is no need to review the
games code base to acknowledge the implemented functionality’s working status. Being able to
construct test cases quickly aids the pace of development, in which errors can be quickly
acknowledged also; therefore, I have nominated this testing method for its suitability.

Blackbox testing cases

Case Summary Process Actual result(s) Expected result(s) Passed?
1 Player object travels

upwards and
descends gradually
when jump button is
pressed.

Jump button embedded
within the UI is pressed
when the player object is
‘grounded’.

Player object travels
upwards once jump button is
pressed; the player object
gradually descends due to
gravity parameter set.

Player object travels
upwards once jump button is
pressed; the player object
gradually descends due to
gravity parameter set.

2 Player object rotates
around its own axis
positively in the ‘Y’
axis when turn right
button is pressed or
held.

Turn right button
embedded within the UI is
pressed.

Player object rotates right
around its own axis in the ‘Y’
axis at a constant rate once
turn right button is pressed
or held.

Player object rotates right
around its own axis in the ‘Y’
axis at a constant rate once
turn right button is pressed
or held.

3 Player object rotates
around its own axis
negatively in the ‘Y’
axis when turn left
button is pressed or
held.

Turn left button
embedded within the UI is
pressed.

Player object rotates left
around its own axis in the ‘Y’
axis at a constant rate once
turn left button is pressed or
held.

Player object rotates left
around its own axis in the ‘Y’
axis at a constant rate once
turn left button is pressed or
held.

4 Player object travels
forwards to its
current facing
direction when
move forward
button is pressed or
held.

Move forward button
embedded within the UI is
pressed.

Player object travels
forwards to its current facing
direction at a constant rate
when the forward button is
pressed or held.

Player object travels
forwards to its current facing
direction at a constant rate
when the forward button is
pressed or held.

5 Player object travels
backwards from its
current facing
direction when
move backward
button is pressed or
held.

Move backward button
embedded within the UI is
pressed.

Player object travels
backwards from its current
facing direction at a constant
rate when the backward
button is pressed or held.

Player object travels
backwards from its current
facing direction at a constant
rate when the backward
button is pressed or held.

6 Camera perspective
changes when
camera cycle button
is pressed.

Camera cycle button
embedded within the UI is
pressed.

Camera perspective changes,
via disabling the current
camera at the time the
camera cycle button is
pressed and enabling the
disabled camera at the time
the camera cycle button is
pressed.

Camera perspective changes,
via disabling the current
camera at the time the
camera cycle button is
pressed and enabling the
disabled camera at the time
the camera cycle button is
pressed.

7 Player object
deflects off objects,
does not glitch
through other rigid
objects with
colliders.

Player object travels
towards rigid object with
collider and collides
continually.

Player object continually is
pushed away from the object
it collides with, the player
object remains upright and
on a surface; player object
does not glitch through other
rigid objects with colliders.

Player object continually is
pushed away from the object
it collides with, the player
object remains upright and
on a surface; player object
does not glitch through
other rigid objects with
colliders.

8 Disclaimer window
appears with the
according disclaimer
text and disappears
on on-click events.

Start button is pressed at
the initial scene when the
game is loaded. The
disclaimer window button
is then pressed if the
disclaimer window
appears.

The start button is pressed at
the initial scene when the
game is loaded, the
disclaimer GUI window
appears in the centre of the
screen with the according
text, when the disclaimer
window (button) is pressed,
the disclaimer window
disappears and the
proceeding scene is loaded.

The start button is pressed at
the initial scene when the
game is loaded, the
disclaimer GUI window
appears in the centre of the
screen with the according
text, when the disclaimer
window (button) is pressed,
the disclaimer window
disappears and the
proceeding scene is loaded.

Unit testing

Purpose of unit testing

Opposing Blackbox testing, unit testing is a software testing technique which focuses on specific
units or components within a given application; the code base of the given application is known,
which is necessary to determine whether each unit within the applications functionality works as
intended, in isolation. This is measured from a statistical basis, to ensure the accuracy of the tested
units.

In relation to the mobile game as a piece of software, unit testing enables the identification of unit
correctness or accuracy within application functionality. Therefore, unit testing is useful for
determining numerical output correctness, specifically for the use of measuring forces applied to
and acting on objects in the game, as well as pinpointing arithmetic and conditioning errors, which

make up functionality within the application. Unit testing has been nominated as a testing method
for its degree of precision that it provides for this matter.

Unit testing cases

Case Summary Process Actual result(s) Expected result(s) Passed?
1 Determine whether the

player object can only
jump once, from when
the corresponding
button is pressed, and
object is grounded

Interact with the
jump button, whilst
the player object is in
the animation of
jumping

‘isGrounded’ returns ‘false’
when the player object is
mid-air and returns ‘true’,
when the player object is
in contact with the
grounding plane

‘isGrounded’ returns
‘false’ when the player
object is mid-air and
returns ‘true’, when the
player object is in contact
with the grounding plane

2 Determine whether the
subtitle sequence is
only replayable after
the current sequence
coroutine finishes

Interact with the
subtitle sequence
button, whilst the
subtitle sequence is
active

‘morseCodeAudio’ returns
‘false’ when the coroutine
is active and returns ‘true’,
when the coroutine has
finished

‘morseCodeAudio’ returns
‘false’ when the coroutine
is active and returns ‘true’,
when the coroutine has
finished

3 Determine whether
objects are only
interactable with,
when the first-person
camera is enabled

Attempt to interact
with interactable
objects, while the
third-person camera
perspective is active

‘mousePressed’ returns
‘false’ when the third-
person camera is active
and returns ‘true’, when
the first-person camera is
active

‘mousePressed’ returns
‘false’ when the third-
person camera is active
and returns ‘true’, when
the first-person camera is
active

4 Determine whether the
disclaimer GUI window
closes upon clicking on
it, as acknowledgment

Interact with the start
and disclaimer GUI
window buttons, in
the menu screen
scene

‘displayDisclaimer’ returns
‘true’ when the disclaimer
GUI window is initially
made and returns ‘false’,
when the disclaimer GUI
window button is pressed
upon

‘displayDisclaimer’ returns
‘true’ when the disclaimer
GUI window is made and
returns ‘false’, when the
disclaimer GUI window
button is pressed upon

5 Determine whether
one camera remains
active and the other
remains inactive, when
the camera is toggled

Interact with the
camera toggle
button, embedded
within the UI

‘firstCamera’ returns ‘true’
when application starts
and ‘false’ when cameras
are toggled again.
‘secondCamera’ returns
‘false’ when application
starts, and ‘true’ when
cameras are toggled again.
‘toggleCamera’ returns
‘true’ and ‘false’ per
alternating button press

‘firstCamera’ returns ‘true’
when application starts
and ‘false’ when cameras
are toggled again.
‘secondCamera’ returns
‘false’ when application
starts, and ‘true’ when
cameras are toggled again.
‘toggleCamera’ returns
‘true’ and ‘false’ per
alternating button press

Performance profiling

Purpose of performance profiling

Performance profiling is a software testing technique that is particular to system performance, when
a given system is executing software. Performance profiling has no intervention with an applications
code base and like Blackbox testing, performance profiling can be observed visually, also. For which,
performance profiling can be used to determine how systems perform in relation to responsiveness
and stability, when executing software; a systems resource consumption and reliability can be
measured.

In relation to the mobile game as a piece of software, performance profiling will allow the reliability
of the software to be measured in systems, in the unit of frames per-second (FPS). This dictates the
smoothness of the games representation and is dependent on the hardware of the executing
system, the games visual representation, the number of events and objects that appear in a scene
and the interactions that occur between these objects. In which, higher displaying units of FPS
indicate a better system performance. I have nominated performance profiling, as a testing method
to determine the playability of the game, over the duration of its development.

Performance profile test cases

Case Summary Process Actual result(s)
1 First scene, start-up

performance profiling
Load into the first scene
of the game, capture
performance using
Unity profiler

Peak usage: CPU (97.5%), GPU (91.4%), RAM (1.55GB)
Minimum usage: CPU (96.2%), GPU (13.4%), RAM (1.49GB)
Average FPS: 145.58

2 First scene, player
exploring environment
performance profiling

Load into the first scene
of the game and
explore environment,
capture performance
using Unity profiler

Peak usage: CPU (98.4%), GPU (95.9%), RAM (1.82GB)
Minimum usage: CPU (96.3%), GPU (17.5%), RAM (1.71GB)
Average FPS: 141.70

3 First scene, switching
camera perspectives
performance profiling

Load into the first scene
of the game and switch
camera perspectives
continuously, capture
performance using
Unity profiler

Peak usage: CPU (97.3%), GPU (85.8%), RAM (1.91GB)
Minimum usage: CPU (97.2%), GPU (21.6%), RAM (1.79GB)
Average FPS: 137.23

4 Loading screen scene,
start-up performance
profiling

Load game from menu
screen, capture
performance using
Unity profiler

Peak usage: CPU (97.8%), GPU (29.4%), RAM (1.18GB)
Minimum usage: CPU (97.0%), GPU (10.8%), RAM (1.17GB)
Average FPS: 145.61

Appendix D:

System overview

 ‘Under Lock and Key’ is a mobile-based game that aims to provide players with a three-dimensional
outlook on solving puzzles, as a game bound by the puzzle genre. Players of the game are expected
to be able to view the game from within first-person and third-person perspectives, to help solve the
games puzzles; the basis of the game will require players to be able to interact with objects
throughout various house-type environments, in the form of rooms. A puzzle should be represented
as a room, in which, the objects that lie within each room should be components of the puzzle. To
complete all of the game’s puzzles, players are required to transition between each of the rooms.
For which, when each of the room’s objectives can be identified as complete, the player should be
able to proceed and therefore complete the game.

System Design Document (SDD)

SDD overview

This SDD purposes to describe the reporting systems requirements, system architecture, format of
input and user interface (UI) design, for which the format of input will address. All of which
information, is necessary for navigating the development and implementation of the system,
programmatically. In the context of the project, the intended audience of this document aims to be
for the project manager and developer(s). Moreover, in relation to the systems requirements, there
should be correspondence with the systems functional requirements.

System design

‘Under Lock and Key’ aims to enable players to be involved within an immersive gaming experience
that adopts conventions of mystery and suspense to enhance the narrative plot of the game; for
which, is based upon a prisoner with only one objective, to escape. The systems design purposes to

enable the narrative of the game, where a player can interact with and resolve puzzles progressively.
A single system is sufficient for this purpose.

Design objectives

 Camera object control
 Player object control
 Player interaction
 Puzzle sequencing
 Scene transitioning
 Navigable configuration menus
 Subtitling
 Disclaimer prompt
 UI addressing control and interaction
 Conventional to puzzle genre
 Stable system performance

In relation to the systems intended audience, it is necessary for users of the system to be advised
about the nature of the games content, as themes of suspense are intended to be illustrated
aesthetically and portrayed as sinister. The systems design makes considerations for player
discretion, through implementing disclaimer-related prompts; this aims to inform all age of player,
but especially youthful players, who are considered more prone to being scared.

Design assumptions

The systems availability will exist across android mobile platforms only, for which, the system will be
developed and deployed for android version 4.1 (Lollipop) and above devices; this supports the
majority of android user devices. Throughout the development of the game, changes and alterations
to the systems functionality and arrangement are probable to occur, mostly as the result of testing
and debugging. In which, development and testing processes of the system are likely to be
conducted simultaneously, attempting to achieve proper functionality and robustness of the systems
code base, progressively. System development will attempt to adhere to the Agile methodology
SCRUM; testing, exploratory. Moreover, users of the system will be players of the game, who will be
able to complete the games objectives through interacting with a mobile devices interface. Users
will not require an active internet connection to use the system, therefore there will be no network
considerations.

Design constraints

The systems design will present increased focus upon the implementation of game functionality,
rather than performance considerations; however, significant performance issues will be accounted
for throughout the games development. Thereby, there will be a trade-off between the quantity of
functionality and quality of performance. In further correspondence to testing, there is a lack of
devices available to analyse the systems performance effectively; an array of devices is required and
so the systems performance cannot be assured across numerous devices. Due to the potential
longevity of the game, the design will only consider multiple levels of the game, as the result of time
restraints and lack of development and testing personnel. Also, in scope of time restraints, as the
systems development is time dependant, the games aesthetic and some narrative intentions may
not be delivered; this could also be anticipated by a lack of third-party resources available, to aid the
games development.

System architecture

Relating to the systems architecture, I have opted for an object-orientated programming (OOP)
approach for the use of classes, for which, each of said classes proposes to separate and group the
systems attributes and behaviours in the form of data and functions, by association. From the
application of classes, the system aims to be organised structurally and as a commonly used data
structure within previous developments, the application of classes assumes a hastened rate of
development. Additionally, the system proposes to adopt the principle of inheritance between
classes, for the means of interacting with and overriding base class members; this exemplifies the
concept of polymorphism and is useful for classes that have similar functionality. Furthermore, the
system will also make use of encapsulation from the existence of class member access modifiers,
these govern the accessibility of class members to external classes; access modifiers will allow
classes of the system to provide protection from accidental member modification, from other
classes residing in the system.

In the demonstration of the proposed systems architecture, I have constructed a Unified Model
Language (UML) diagram for the purpose of representing the systems structural design. In which,
the diagram aims to acknowledge the relationship between the systems classes and to identify each
of the classes data and functional members. From the existence of the UML class diagram, the
development of the system can be navigated to achieve the functional requirements of the game
and can therefore fasten the development process. However, as previously mentioned the
arrangement of the systems structure and its accompanying functionality are subject to change;
therefore, the diagram presented below should be interpreted as the preliminary system design.

User Interface

Designing the in-game user interface (UI) requires the support for players being able to interact with
objects, within their environments throughout the game; the interface should not be a restraint on a
player’s ability to complete game objectives. In accordance with the functional requirements of the
game, the player-controlled object should be able to do the following:

 The player-controlled game object can traverse in the facing direction of the active camera
object, when the corresponding user interface buttons are interacted with

 The player-controlled game objects facing direction can be adjusted, when the
corresponding user interface buttons are interacted with

 The player-controlled game object can interact with interactable objects, when within the
required proximity of these objects, through touch, hold and swipe interactions

In relation to player-controlled object movement, the player should be able to traverse forwards and
backwards in the facing direction of the camera. Also, the player-controlled object should be able to
rotate around its own axis, universally, to adjust its facing and traversing direction. This functionality
can be addressed by the use of buttons, when pressed or held; the buttons should be cast aside
from the central viewpoint of the active camera’s projection, this aims to prevent view obstruction.
Moreover, relating to object interaction, players can be abled to engage with interactable objects via
performing touch, hold or swipe gestures upon the playing devices interface. This can be achieved
through the implementation of ray casting, which does not require the existence of buttons.

Furthermore, to aid players with objective and puzzle resolution, alternating camera perspectives
should be implemented to enhance the players field of view (FOV) and environmental awareness.
Relating back to the game’s functional requirements, the games scenes should enable the following:

 The scenes will allow the presence of numerous player-controlled camera objects

Similarly, alternating camera perspectives can be addressed via the existence of a button, when
pressed. The button controlling the functionality should also be positioned on the edging perimeter
of a user’s device, to prevent view obstruction. However, to prevent accidental interaction, the
button should also be positioned uniquely from player-controlled movement buttons. In the
following illustration the discussed functionality can be conceptually visualised and addressed, in
consideration of the intended orientation of user device, landscape.

Moreover, a player should be made able to pause the game sessions state and adjust the games
configuration when within said state, as detailed within the game’s functional requirements:

 The application will allow a player to pause the state of a game session

Pausing the state of a game session can also be addressed via the application of a button, when
pressed. Furthermore, the button can also be positioned near to the alternating camera perspective
button, which attempts to enable the interface to be compact and easily navigable. Unlike player-
controlled movement, alternating camera perspectives and entering player configuration menus are

Figure 1: In-game UI design, when the game session is in a playable state

assumed to be interacted with less, which insinuates that this design choice is suitable as players will
be encouraged to press these buttons consciously; thus, avoiding accidental interaction. As expected
from entering the paused state of the game session, the system should facilitate the following:

 The application will allow a player to toggle the active state of subtitling
 The application will allow a player to exit a game session

In the following image, the intended functionality of the pause menu interface can be conceptually
visualised and addressed.

In addition to fulfilling the functional requirements of the proposed system, the in-game UI design
also aims to enable players to identify items they have obtained, from their interactions in each
puzzle room scene. In accordance to the game’s objectives, items in the form of game objects are
proposed to be obtained by a player and used in conjunction with other objects when interacted
with; from a player being able to acknowledge that it has possession of items, aims to navigate a
player to its next objective in the sequence. In which, the way an item appears visually attempts to
familiarise players with a related game object in the surrounding environment, therefore, the next
objective or puzzle component becomes more obvious to the player. Summarily, said technique will
enable gradual gameplay progression and will further try to prevent player frustration from arising.

Player acknowledgement regarding item possession can be addressed via the application of images
corresponding to the game objects a player obtains. Such images should be placed and positioned
away from all of buttons previously specified but should reside within the edging perimeter of a
user’s device. This design choice aims to prevent accidental interaction with buttons and to maintain
the compactness and comprehensive state of the interface, also.

Meanwhile, in relation to the interface of the loading screen scene, a player should be able to start a
game session as specified within the functional requirements:

 The application will allow a player to start a game session

As seen within all of the previously illustrated interfaces, the ability to start a game session will also
be addressed via the implementation of a button, when pressed. However, unlike the in-game UI
design, there is no requirement for specific button positioning as an active game session would not

Figure 2: Menu UI design, when the game session enters the configuration state

exist. In which, the arrangement chosen for the loading screen UI imposes to be unique in
comparison to the other UI designs, whereby it is considered aesthetically driven. In correlation to
the pause menu UI design, the loading screen UI design also addresses the following functionality:

 The application will allow a player to toggle the active state of subtitling
 The application will allow a player to exit a game session

In consideration of the interface’s functionality, the diagram below attempts to exemplify the visual
and functional aspects of the interface.

Appendix E:

Introduction (max. 100 words):

This document purposes to provide insight into the development of my project, a 3D puzzle game
titled ‘Under Lock and Key’, which situates as a ‘escape the room’ type game; to note, this project
will utilise Unity game engine for its development. The basis of the game follows the narrative of the
player who is captured and taken to a house with interconnected rooms containing puzzles. The
players objective of the game is to interact with their environment with use of basic numeracy and
physical skills, to solve each puzzle; for each puzzle that is complete, the player nears escaping.

Project Background (max. 300 words): A brief description providing the project
background/context.  e.g.  is it based on a business need?  a technical need?  does it arise from the
interests of a particular person/company?

'Under Lock and Key’ is a common saying within British society and infers to an individual or group of
people who are being kept in a place, generally a place which is inescapable; usually being a prison.
As a 3D puzzler game, I have chosen to adopt an ‘escape the room’ orientation of gameplay, as
inspired by the movie series ‘Saw’ and mobile game series ‘The Room’. For which the name ‘Under
Lock and Key’, enforces the theme of imprisonment I am aiming to portray for the game; and as
imagined in the film and game series mentioned, the concept of imprisonment is created from the
use of rooms containing puzzles. Inevitably this is an idea I want to be prominent throughout the
game and am proposing it to be addressed from the existence and interaction of models, lighting,
cameras, textures, audio and buttons within a user interface which are bound together with scripts.

Figure 3: Loading screen UI design, when the application initially loads into memory

Notably the game bases itself upon the interior of a large house/ building and as the narrative
begins, the player is captured and considered a prisoner in the house, unless he/ she can complete
all the puzzles in the corresponding rooms and escape.

Moreover, in further relation to the said film and game series, the game aesthetics I want to apply
are also influenced by the sinister-like environments seen. Whereby more like ‘The Room’ game
series, low-key lit environments are seamlessly used to present darker tones and colours; from
observation, low-key lit environments dramatically increase the level of suspense of a player's
experience. Suspense is another theme I want to adopt into the game given its puzzler-nature, which
aims to slow the pace of gameplay and for players to attempt to complete puzzles methodically,
rather than to approach them illogically and aimlessly.

Aims (max. 100 words): A statement of the overall aims of the project.

The project aims to present a prototype version of a 3D puzzler game, developed for mobile specific
use using Unity game engine. Within the game, the game aims to present a player with puzzles
within their relative environment. Each puzzle is intended to employ a players numerical and or
physical capabilities at a basic level; and are intended to be addressed by the existence of models,
lighting, cameras, textures, audio and buttons within a user interface which are bound together with
scripts. A level should be made to display the game mechanics and puzzle sequencing, featuring
numerous interconnected rooms.

Objectives (max. 200 words): A list of specific, measurable objectives, each of which is likely to
result in a deliverable. They specify all the work tasks to be undertaken to meet the stated aim.
They will vary from project to project, as every project is different, but some examples are
provided below. All projects will need to review and report on the literature in a chosen area.
Projects might include such general objectives as: To investigate system requirements and
produce a Requirements Specification. To research and write a report on good practice in HCI
design. To design an interface using the findings from the HCI report. To design and execute a
suitable test plan. Or they might be more specific, e.g.: To review and report on how mathematical
simulation techniques could be applied to a traffic simulator.

- To create a literature review document with a word count of 2000 words regarding the
content of existing 3D puzzler games

- To create a functional requirements document detailing the operations and activities
(functionality) of the 3D puzzler games system

- To create a suitable indicative test plan document, which discusses the methods of testing
and the test cases conducted (actual test cases)

- To create a system design document exploring the 3D puzzler game system architecture,
user interface design and creating UML/ ERD diagrams to show the relation between classes

- To create an implementation report document with a word count of 300 words regarding
what the prototype demonstration of the 3D puzzler game will include (front-end (visual)
and back-end (code))

- To create a main report document with a word count of 8000 words presenting the system
functionality implementation and decisions, development of software lifecycle methodology
and system analysis and reflection

- To attend a viva meeting, demonstrating created system and handling questions that follow
professionally

- To create a 3D puzzler game in accordance with my agreed upon project contract objectives
- To attend a minimum of 10 management meetings with my allocated supervisor

Deliverables (max. 100 words): A list of your Project’s deliverables with some general description
could be found in the module specification.

First deliverable (25%) - due 10/01/2020 (3:00 pm)

- Literature review (20%)
- Functional requirements (20%)
- Indicative test plan (20%)
- System design documentation (20%)
- Implementation report (20%)

Final deliverable (75%) - due 1/5/2020 (3:00 pm)
- Main report (35%)
- Viva (15%)
- The system (40%)
- Management meetings (10%)

Resources and Constraints (max. 100 words): A list of any specific resources that the project
requires; for example, hardware and software; access to people or organisations. A list of any
known constraints, for example, availability of certain resources.

Hardware

- Computer device (laptop, personal desktop, or University desktop device), access and
availability of computer labs on University campus is required if use is needed

- USB device (portability of project)
Software

- Unity game engine (game development)
- Microsoft Visual Studio (game scripting)
- Adobe Photoshop (game textures/ materials, GUI)
- Audacity (game audio effects)
- Microsoft Office - Word (written deliverables and general note taking)
- Internet client (research and project implementation guidance)

Constraints
- Internet availability for submission of deliverables
- Personal computing devices must be used in the case of lacking availability of computer labs

on University campus with the suite of software I require

Sources of Information (max. 100 words): A list of sources you intend to use. These could include:
Specific books/journals if you already know of them; Library/Internet; Organisations or individuals
you intend to contact.

Internet

- The internet will serve as my predominant method for sourcing information, the internet
can provide information and documentation regarding program code implementation,
existing games like that of ‘The Room’ series, films like that of the ‘Saw’ series and other
media to inform me about existing mechanics, aesthetics and gameplay; inspiring me with
ideas for my own project. Game assets can also be acquired from relevant sites to aid the
games development.

Unity asset store
- In addition to the internet, I can gather assets from the asset store within the Unity game

engine, as a point of convenience.

Risk Analysis (max. 100 words): What could endanger your project, what will you do if it happens.

Throughout the creation of my project, a series of computing devices will be used for its creation;
University owned and personally owned. Computer devices are known to malfunction, corrupt
stored data or be prone to physical damage at random or in the event of system failures. To
overcome this, local copies of the project will be made on a regular basis; University devices have
profiles which are cloud-based and are not of concern. To prevent the loss of my project, I am going
to upload my project regularly to a cloud-based service, OneDrive, ensuring that my project will
always exist.

Schedule of Activities (max. 300 words): Having defined the tasks to be undertaken in the list of
objectives, you need to prepare a Project Plan to show how you intend to carry them out.

For conducting my tasks which make up the objectives for the project, I have created a Gantt chart
which aims to visually indicate the order in which the objectives will be complete and their indicative
time necessary to be completed. Completion is measured in days, but accounts for the typical
workable hours within a day; being eight hours. This measure considers the timing of sleeping (eight
hours), food consumption related activities (two hours), hygiene maintenance related activities (one
hour), the most congested University timetabled day (five hours) and minor intricacies that may
occur between the transitioning from and to any said time-based event. To make note, weekends
are excluded as workable days for the project, this is due to work commitments, for which I am
legally required to fulfil sixteen hours of work over this period, every week.

As set out and in accordance with the Gantt chart, objectives are conducted chronologically in
correspondence to their deadlines and issued order; the order being: student forms, first
deliverables and lastly the final deliverables. The overall time required to complete the project from
the starting work effort (14/10/19) to the ending work effort (18/02/20) is fifty-seven days
(indicative), which suffices for approximately 1.9 months or 456 working hours. For the viva, the
chart does not consider the actual date of it happening as it is not given and assumes it proceeds
from all deliverables being submitted; the chart shows the time necessary to prepare for and deliver
the viva. Similarly, the actual dates of each project progress meeting are not considered as they are
not pre-determined, but the time accumulated for all meetings is considered and shown within the
chart. It is without doubt that the game will require the most time for its completion given its scale,
and project grade weighting.

Appendix F:

Please indicate which of these possible attributes is addressed by your undertaking of this project.
You should select at least two items.

 Addressed by
Project?

1- Ability to work collaboratively: teams from a range of backgrounds and
countries

No

2- Excellent communication skills with a sensitivity to speaking with and
listening to non-native English speakers

No

3- An ability to embrace multiple perspectives and challenge thinking in a
range of cultural context 

No

4- A capacity to develop new skills and behaviours according to role
requirements

Yes

5- An ability to negotiate and influence clients across the globe from
different cultures

No

6- An ability to form professional, global networks No
7- An openness to/respect of a range of perspectives from around the

world
No

8- Multi-cultural learning agility (i.e. able to learn in any culture or
environment)

Yes

Brief description of how the ticked attributes have been addressed (max. 50 words per item):

Item 4: As each puzzle will have multiple objectives, which totals to its completion, players will think
and approach to complete puzzles non-sequentially, encouraging players to recognise an order and
figure ways to interact with their environment to complete said puzzles; puzzles employ basic
numeracy and physical skills for their completion.

Item 8: The game will feature minimal amounts of text displaying to the screen; audio will be specific
to an objective which makes up a puzzle. Audio will be subtitled in numeric (or Morse) format to
enable the completion of puzzles, no matter a player’s known languages. Players require a mobile
device.

Appendix G:

Brief description of proposed activity and its objectives

- A 3D puzzler game specific to mobile devices, the game establishes a sinister themed
environment excluding gore and violent elements to create a suspenseful gameplay
experience. The game ‘Under Lock and Key’ proposes as a ‘escape the room’ game type,
which follows the narrative of a girl who is captured and taken to a house with
interconnected rooms containing puzzles. The players objective of the game is to interact
with their environment with use of basic numeracy and physical skills, to solve the given
puzzles. With each puzzle complete, nears the players escape from the imprisonment.

Project objectives

- Create a 3D puzzler game which is played on mobile devices
- Create sinister themed world space, which is maintained throughout the game, with

consideration of evading age/ audience restriction (use of textures, lighting and materials to
create desired aesthetic)

- Creation and use of camera(s) to enhance player awareness and experience of solution
orientation of gameplay

- Incorporate the use of models, lighting, textures (materials), cameras, audio and buttons
within a user interface, which should be bound together with scripts to address the puzzles
and their progress of completion

- Create a level to display the game mechanics and puzzle sequencing (narrative
development)

Ethical Issues Identified

- As the proposed aesthetic of the game is going to adopt a sinister themed environment for
the player to explore, players of younger age groups may interpret such environment to be
scary, even when any thriller elements are not apparent. The sinister theme is to be
achieved from using dull colouring and low intensity/ lack of lighting to simulate dimness;
this aims to create my desired suspense of gameplay.

- The game will require someone to test for working functionality of game mechanics and the
sequencing of gameplay

How these will be addressed
- Overcoming age restricted content, the game will not feature content which aims to scare

and or portray gore and violence; this will satisfy younger audiences. Moreover, the loading
title/ menu screen of the game will present the games aesthetic, which aims to introduce
the suspense of gameplay and sinister themed environment the player can expect to be in.
The proposed rating for the game will be ‘Everyone’ in accordance with ESRB rating guides,
but a disclaimer will be made visible at the menu screen upon loading the game.

- Overcoming testing, I myself will be testing the game throughout its development cycle,
which enables improper functionality to be amended when discovered

Appendix H:

Figure 62: ‘Puzzle’ abstract class, contain the virtual methods to be implemented within the puzzle room classes, display the
inheritance relation between the puzzle room classes and their interface

Figure 63: ‘PuzzleRoomOne’ class, illustrating the several instances of association to external classes and enumerations

Figure 64: ‘PuzzleRoomTwo’ class, part one of three illustrations of the class’s substantial level of association and instances of
enumeration

 Figure 68: ‘SubtitleToggleAnimator’ class, showing the only association, to the
‘ButtonController’ class

Figure 67: ‘PuzzleRoomThree’ class, identify the only association, to the ‘InteractionController’ class (classes functionality is
conceptual and not developed)

Figure 66: ‘PuzzleRoomTwo’ class, part two of three illustrations of the class’s substantial level of association and instances of
enumeration

Figure 65: ‘PuzzleRoomTwo’ class, part three of three illustrations of the class’s substantial level of association and instances of
enumeration

Figure 69: ‘SubtitleController’ class, illustrating the only association, to the
‘PuzzleRoomOne’ class

Figure 70: ‘PlayerController’ class, identify the associations to the ‘ButtonController’,
‘LeftJoystickHandler’, ‘InteractionController’, ‘PlayerAnimation’ and puzzle room classes, as well as the

instance of enumeration

Figure 71: ‘InteractionController’ class, showcase the multiple instances of enumeration and association to the
‘CameraController’, ‘PlayerController’ and puzzle room classes

 Figure 73: ‘ButtonController’ class, identify the association to the ‘LeftJoystickHandler’,

‘PlayerController’, ‘CameraController’, ‘WindowGUI’, ‘SubtitleToggleAnimator’ and puzzle room classes

Figure 72: ‘WindowGUI’ class, showcase the multiple associations to the ‘SceneController’,
‘ButtonController’, ‘InteractionController’, ‘LoadingScreenAnimator’ and puzzle room classes

Figure 75: ‘SceneController’ class, showcasing the association to the ‘PlayerController’ and
‘WindowGUI’ classes

Figure 74: ‘LeftJoystickHandler’ class, display the association to the ‘ButtonController’ and ‘PlayerController’ classes, as well
as the application of enumeration and multiple instances of inheritance

Appendix I:

Tabularised beneath this passage, details the safe puzzle implementation, as presented in the
second puzzle room scene. A step-by-step process for the puzzles continuity is presented, alongside
the mechanisms that address the scenarios revealed; all of the mechanisms that are detailed in the
following table, reside within the ‘InteractionController’ and ‘PuzzleRoomTwo’ classes (see Appendix
H).

Table 1: Puzzle room two, safe puzzle mechanical implementation, detailing the functional invocation of the puzzle’s
components

Safe puzzle: mechanical implementation

Step Process Mechanisms employed How have the mechanisms been addressed?
1 Activate the

movement of the
picture canvas

object, to enable
the safe object

interaction.

Touch-based interaction
with the picture canvas
object, to invoke the ‘X’
dimensional translation

of the picture canvas
objects position and
accompanying audio

cues.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the picture canvas
object is pressed within any screen point occupied by the

application. This invokes the ‘SafePictureMove’ method within the
‘PuzzleRoomTwo’ script.

2 Crack the safe to
progress to the

table piece puzzle.

Touch-based interaction
with the safe door or safe
dial objects, to enter the
safe interaction view, via
the first-person camera.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the safe door or safe
dial objects are pressed within any screen point occupied by the
application. This invokes the ‘EnterSafeView’ method within the

‘PuzzleRoomTwo’ script.
Swipe gesture-based

interaction when within
the safe interaction view,

to invoke the rotary
movements of the safe

dial object and
accompanying audio

cues.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a held leftwards or swipe left interaction being
performed, the ‘swipeDIrection’ enumerator object is set to

‘HeldLeft’ of ‘Left’. This is used to invoke the ‘SafeDialRotation’
method within the ‘PuzzleRoomTwo’ script; which rotates the safe
dial object anti-clockwise for every frame the gesture is performed.

If the ‘SafeProgress’ enumerator object is set to ‘FirstLeft’ or
‘ThirdLeft’, as checked within the ‘SafeCracking’ method every

Figure 76: ‘CameraController’ class, illustrate the association to the ‘PlayerController’ and ‘ButtonController’
classes

frame, the Boolean variable ‘safeDialWrongDirection’ is set to ‘true’;
this invokes the ‘ExitSafeView’ and ‘SafeReset’ methods within the

‘PuzzleRoomTwo’ script, which resets the SafeProgress’ enumerator
object to ‘Active’. Meanwhile, upon a held rightwards or swipe right

interaction being performed, the ‘SwipeDIrection’ enumerator
object is set to ‘HeldRight’ of ‘Right’. This is used to invoke the

‘SafeDialRotation’ method within the ‘PuzzleRoomTwo’ script; which
rotates the safe dial object clockwise for every frame the gesture is
performed. If the ‘SafeProgress’ enumerator object is set to ‘Active’
or SecondRight’, as checked within the ‘SafeCracking’ method every
frame, the Boolean variable ‘safeDialWrongDirection’ is set to ‘true’;
this invokes the ‘ExitSafeView’ and ‘SafeReset’ methods within the

‘PuzzleRoomTwo’ script, which resets the SafeProgress’ enumerator
object to ‘Active’. For the rotation and reset procedures of the safe

dial object, relevant sounds are invoked by the ‘SafeCracking’
method.

Appendix J:

For outlining the table piece puzzle implementation, delivered in the second puzzle room scene. A
step-by-step process demonstrating the puzzles continuity has been compiled, alongside the
mechanisms that address each of the processes listed; all of the mechanisms observed in the
following table, reside within the ‘InteractionController’ and ‘PuzzleRoomTwo’ classes (see Appendix
H).

Table 2: Puzzle room two, table piece puzzle mechanical implementation, detailing the functional invocation of the puzzle’s

components

Table piece puzzle: mechanical implementation
Step Process Mechanisms employed How have the mechanisms been addressed?

1 Obtain table piece
key, to enable the

table piece
hanging light to

be activated.

Touch-based interaction
with the table piece key

object, to obtain the table
piece key object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the table piece key
object is pressed within any screen point occupied by the

application. This invokes the ‘GameObjectObtained’ method within
the ‘PuzzleRoomTwo’ script, which reduces a passed objects scale

and sets it to inactive upon reaching (0, 0, 0). As a method returning
a Boolean state, ‘true’ is returned if the table piece key objects scale

is (0, 0, 0), which is further used to identify the
‘TablePieceInteractble’ Boolean variable as ‘true’.

2 Activate the table
piece stand

hanging lights, to
enable the table

piece stand
interaction.

Look-based interaction
with the table piece stand

object, to invoke the
lights on animation state

of the hanging light
object.

Look-based interaction is implemented in the
‘RaycastToObjectsCameraView’ method, within the

‘InteractionController’ class. The method casts a ray from the centre
of the first-person cameras viewport and compares the colliding

objects tag with the object tag passed in the method. As a method
returning a Boolean state, ‘true’ is returned for the table piece stand

object seen. This invokes the active animation state for the table
piece stand object lights, within the ‘TablePieceSolving’ method, in

the ‘PuzzleRoomTwo’ script.
3 Insert the table

piece key, to
enable the table

globe interaction.

Touch-based interaction
with the table piece stand
object, to enter the table
piece stand interaction

view, via the first-person
camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the table piece stand
object is pressed within any screen point occupied by the

application. This invokes the ‘EnterTablePieceView’ method within
the ‘PuzzleRoomTwo’ script.

Touch-based interaction
with the table piece key
holder object, to insert

the table piece key object
that was previously

obtained, into the table
piece key holder object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the table piece key
holder object is pressed within any screen point occupied by the

application. This is used to alternate the value of the
‘TableKeyInserted’ Boolean variable, to ‘true’; which is then used to

invoke the ‘ExitTablePieceView’ method within the
‘PuzzleRoomTwo’ script.

4 Reproduce the
table globe
animation

sequences, to
solve the puzzle.

Touch-based interaction
with the table globe

object, to enter the table
globe interaction view,

via the first-person
camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the table globe object
is pressed within any screen point occupied by the application. This

invokes the ‘EnterTableGlobeView’ method within the
‘PuzzleRoomTwo’ script.

Touch-based interaction
with the table globe

object, to invoke the first
puzzle iteration

animation state of the
table globe object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the table globe object
is pressed within any screen point occupied by the application. This

is used to alternate the value of the ‘TableGlobePuzzleBegin’
Boolean variable, to ‘true’; which is then used to invoke the

‘IterateTableGlobePuzzle’ method within the ‘PuzzleRoomTwo’
script.

Touch-based interaction
with the table globe

country marker objects,
to invoke the table globe
country marker material-

switch animation and
their accompanying audio
cues when pressed. Also,

to select the county
marker objects that

formulate the correct
sequence, to invoke the

next puzzle iteration
animation state of the

table globe object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if a country marker
object is pressed within any screen point occupied by the

application. This is used to add string entries to the
‘tableGlobeCountryMarkerInput’ list of strings; upon a country

marker entry being incorrect to the sequence, the
‘ResetGlobePuzzle’ method is invoked. This resets the table globe

puzzle progress variable states.

Swipe-drag gesture-based
interaction when within

the table globe
interaction view, to

invoke the rotary
movements of the table

globe object.

Swipe-drag gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘RotateAroundAxis’ method.
The method rotates a passed object in its ‘X’ and ‘Y’ axes, relative to

its local coordinates. Where the difference accumulated between
the gestures current and previous positions, is adapted for being a

multiplier to the object’s rotation, in the axes specified.

Appendix K:

Proceeding from this passage, the music box puzzle implementation is discussed in relation to its
existence within the second puzzle room scene. A step-by-step process that identifies the puzzles
structure has been formulated, alongside the mechanisms that address each of the its components;
all of the mechanisms referred to in the following table, exist in the ‘InteractionController’,
‘PlayerController’ and ‘PuzzleRoomTwo’ classes (see Appendix H).

Table 3: Puzzle room two, music box puzzle mechanical implementation, detailing the functional invocation of the puzzle’s
components

Music box puzzle: mechanical implementation

Step Process Mechanisms employed How have the mechanisms been addressed?
1 Activate the music

box picture look-
interaction, to

enable the music
box picture touch-

interaction.

Look-based interaction
with the music box

picture object, to invoke
the swinging animation
state of the music box

picture object, the light
flickering animation state

of the hanging light
object and to enter the

music box picture
interaction view, via the

first-person camera
object.

Look-based interaction is implemented in the
‘RaycastToObjectsCameraView’ method, within the

‘InteractionController’ class. The method casts a ray from the centre
of the first-person cameras viewport and compares the colliding

objects tag with the object tag passed in the method. As a method
returning a Boolean state, ‘true’ is returned for the music box

picture object seen. This invokes the ‘EnterMusicBoxPictureVew’
and ‘MusicBoxPictureAnimate’ methods within the

‘PuzzleRoomTwo’ script.

2 Activate the
carousel music

box to enable the
music box disc

interaction.

Touch-based interaction
with the carousel music
box object, to enter the

carousel music box
button interaction view,

via the first-person
camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the carousel music
box button object is pressed within any screen point occupied by

the application. This invokes the ‘EnterCarouselButtonView’ method
within the ‘PuzzleRoomTwo’ script.

Touch-based interaction
with the carousel music

box button object, to
enter the carousel music
box cylinder interaction
view, via the first-person

camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the carousel music
box cylinder object is pressed within any screen point occupied by
the application. This invokes the ‘EnterCarouselCylinderView’ and

‘CarouselMusicBoxAniimate’ methods within the ‘PuzzleRoomTwo’
script.

Touch-based interaction
with the music box disc

object, to obtain the
music box disc object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the music box disc
object is pressed within any screen point occupied by the

application. This invokes the ‘GameObjectObtained’ method within
the ‘PuzzleRoomTwo’ script, which reduces a passed objects scale

and sets it to inactive upon reaching (0, 0, 0). As a method returning
a Boolean state, ‘true’ is returned if the music box disc objects scale

is (0, 0, 0), which is further used to identify the
‘MusicBoxDiscObtained’ Boolean variable as ‘true’.

3 Obtain the music
box, latch key,

and wind up key
to enable music

box stand
interaction.

Touch-based interaction
with the music box

object, to obtain the
music box object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the music box object
is pressed within any screen point occupied by the application. This

invokes the ‘GameObjectObtained’ method within the
‘PuzzleRoomTwo’ script, which reduces a passed objects scale and
sets it to inactive upon reaching (0, 0, 0). As a method returning a

Boolean state, ‘true’ is returned if the music box objects scale is (0,
0, 0), which is further used to identify the ‘MusicBoxOtained’

Boolean variable as ‘true’.

Touch-based interaction
with the latch key object,

to obtain the latch key
object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the latch key object is
pressed within any screen point occupied by the application. This

invokes the ‘GameObjectObtained’ method within the
‘PuzzleRoomTwo’ script, which reduces a passed objects scale and
sets it to inactive upon reaching (0, 0, 0). As a method returning a

Boolean state, ‘true’ is returned if the latch key objects scale is (0, 0,
0), which is further used to identify the ‘MusicBoxLatchKeyObatined’

Boolean variable as ‘true’.
Touch-based interaction

with the wind-up key
object, to obtain the
wind-up key object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the wind-up key
object is pressed within any screen point occupied by the

application. This invokes the ‘GameObjectObtained’ method within
the ‘PuzzleRoomTwo’ script, which reduces a passed objects scale

and sets it to inactive upon reaching (0, 0, 0). As a method returning
a Boolean state, ‘true’ is returned if the wind-up key objects scale is

(0, 0, 0), which is further used to identify the
‘MusicBoxWindUpKeyObatined’ Boolean variable as ‘true’.

4 Activate the music
box stand hanging

lights, to enable
the music box

stand interaction.

Look-based interaction
with the music box stand

object, to invoke the
lights on animation state

of the hanging light
object.

Look-based interaction is implemented in the
‘RaycastToObjectsCameraView’ method, within the

‘InteractionController’ class. The method casts a ray from the centre
of the first-person cameras viewport and compares the colliding

objects tag with the object tag passed in the method. As a method
returning a Boolean state, ‘true’ is returned for the music box stand

object seen. This invokes the active animation state for the music
box stand object lights, within the ‘MusicBoxSolving’ method, in the

‘PuzzleRoomTwo’ script.
5 Place the music

box, to enable the
music box

interaction.

Touch-based interaction
with the music box stand
object, to enter the music

box stand interaction
view, via the first-person

camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the music box stand
object is pressed within any screen point occupied by the

application. This invokes the ‘EnterMusicBoxStandView’ method
within the ‘PuzzleRoomTwo’ script.

Touch-based interaction
with the music box holder
object, to place the music

box object that was
previously obtained, onto

the music box holder
object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the music box holder
object is pressed within any screen point occupied by the

application. This is used to alternate the value of the
‘MusicBoxPlaced’ Boolean variable, to ‘true’; which is then used to

invoke the ‘ExitMusicBoxStandView’ method within the
‘PuzzleRoomTwo’ script.

6 Assemble the
music box, to

solve the puzzle.

Touch-based interaction
with the music box

collider view objects, to
enter the music box item
interaction views, via the

first-person camera
object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if a music box collider
view object is pressed within any screen point occupied by the

application. This is used to determine the value of the
‘musicBoxPuzzleProgress’ enumerator object, which determines the

functional invocation for the first-person camera and interaction
methods, in the ‘MusicBoxAssembling’ method, within the

‘PuzzleRoomTwo’ class. The enumerator object governs this
invocation by being the subject of a switch case statement.

Swipe-drag gesture-based
interaction when within

the music box interaction
view, to invoke the rotary

movements of the
camera pivot object.

Swipe-drag gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘RotateAroundAxis’ method.
The method rotates a passed object in its ‘X’ and ‘Y’ axes, relative to

its local coordinates. Where the difference accumulated between
the gestures current and previous positions, is adapted for being a

multiplier to the object’s rotation, in the axes specified.
Pinch gesture-based

interactions when within
the music box interaction

view, to invoke the ‘Z’
dimensional translation

of the camera pivot
object.

Pinch gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a pinch inwards or outwards interaction being
performed, the ‘pinchGesture’ enumerator object is set to

‘PinchInwards’ or ‘PinchOutwards’. This is used to invoke ‘Z’
dimensional translation of the camera pivot object, within the

‘MusicBoxCameraControl’ method, in the ‘PuzzleRoomTwo’ class.
Swipe-drag gesture-based
interaction when within
the music box collider
view object interaction

views, to invoke the
rotary movements of

select music box items.

Swipe-drag gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘RotateAroundAxis’ method.
The method rotates a passed object in its ‘X’ and ‘Y’ axes, relative to

its local coordinates. Where the difference accumulated between
the gestures current and previous positions, is adapted for being a

multiplier to the object’s rotation, in the axes specified.

Swipe gesture-based
interaction when within
the music box collider
view object interaction

views, to invoke the
translation of select
music box items and
accompanying audio

cues.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a swipe right or held upwards interaction being
performed, the ‘swipeDIrection’ enumerator object is set to ‘Right’
or ‘HeldUp’. This is used to invoke ‘Y’ dimensional translation of the

latch key and disc objects, relative to the state of the
‘musicBoxPuzzleProgress’ enumerator object, within the

‘MusicBoxAssembling’ method, in the ‘PuzzleRoomTwo’ class.

Pinch-rotate gesture-
based interaction when

within the music box
collider view object
interaction views, to
invoke the rotatory

movements of select
music box items and
accompanying audio

cues.

Pinch-rotate gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a pinch-rotate left, pinch-rotate hold left, pinch-
rotate right or pinch-rotate hold right interaction being performed,

the ‘pinchGesture’ enumerator object is set to ‘RotateLeft’,
‘RotateHeldLeft’, ‘RotateRight’ and ‘RotateHeldRight’. This is used to
invoke anti-clockwise and clockwise rotations of the disc needle and

wind up key objects, relative to the state of the
‘musicBoxPuzzleProgress’ enumerator object, within the

‘MusicBoxAssembling’ method, in the ‘PuzzleRoomTwo’ class.
7 Activate the

wardrobe doors,
to enable the

wardrobe hide
sequence

interactions.

Touch-based interaction
with the wardrobe

doorknob objects, to
invoke the doors open
animation state of the

wardrobe object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method
returning a Boolean state, ‘true’ is returned if the wardrobe

doorknob objects are pressed within any screen point occupied by
the application. This is used to alternate the value of the

‘WardrobeDoorsOpenActive’ animator Boolean variable, to ‘true’,
within the ‘PuzzleRoomTwo’ script; which enables the player object

to enter the wardrobe object.
Player-based collision
interaction with the

wardrobe collider object,
to invoke the doors close

animation state of the
wardrobe object.

Collision-based interaction is manged by the ‘PlayerController’ class,
within the ‘OnTriggerEnter’ method. The method compares the tag

of the object that collides with a player, within a series of if-else
statements. Upon the player object colliding with the wardrobe

collider object, the ‘forceFirstPersonCameraPerspective’ Boolean
variable is set to ‘true’, as well, the ‘puzzleRoomTwoCollision’ string
variable is set to the tag of the wardrobe collider object; from within

the ‘PlayerController’ class. This prevents the camera perspective
from being toggled, and invokes the doors closing animation state of
the wardrobe object, and the complementary audio cues, within the

‘MusicBoxHide’ method in the ‘PuzzleRoomTwo’ class.

Touch-based interaction
with the wardrobe door

objects, to invoke the
doors open slightly and
fully animation states of

the wardrobe object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the wardrobe door
objects are pressed within any screen point occupied by the

application. This is used to alternate the value of the
‘WardrobeDoorsSlightlyOpenActive’ and

‘WardrobeDoorsFullyOpenActive’ animator Boolean variables, to
‘true’, within the ‘PuzzleRoomTwo’ script; which enables the player
object to exit the wardrobe object, upon the wardrobe door objects

opening to the full extent.

Appendix L:

In the following table, the mechanical implementation for the piano puzzle is detailed, as advertised
in the second puzzle room scene. A step-by-step process for the puzzles development is provided,
alongside the mechanisms supporting each of the developments that are discussed; all of the
mechanisms that are listed in the following table, reside within the ‘InteractionController’ and
‘PuzzleRoomTwo’ classes (see Appendix H).

Table 4: Puzzle room two, piano puzzle mechanical implementation, detailing the functional invocation of the puzzle’s
components

Piano puzzle: mechanical implementation
Step Process Mechanisms employed How have the mechanisms been addressed?

1 Activate the
bookshelf light to

enable the
bookshelf book

interaction.

Touch-based interaction
with the bookshelf light
switch object, to invoke
the light on animation
state of the bookshelf

light object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the bookshelf light
switch object is pressed within any screen point occupied by the

application. This is used to invoke the ‘ToggleBookhshelfLight’
method, within the ‘PuzzleRoomTwo’ script; which enables the

bookshelf light to be active in the scene.
2 Obtain the

bookshelf book,
to enable the

bookstand
hanging light to

be activated.

Touch-based interaction
with the bookshelf book

object, to enter the
bookshelf book

interaction view, via the
first-person camera

object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the bookshelf book
object is pressed within any screen point occupied by the

application. This invokes the ‘EnterPianoMusicSheetBookView’
method within the ‘PuzzleRoomTwo’ script.

Swipe-drag gesture-based
interaction when within

the bookshelf book object
interaction view, to
invoke procedural
translation of the

bookshelf book object.

Swipe-drag gesture-based interaction for procedural translation is
governed by the ‘InteractionController’ class, within the

‘GestureInteraction’ method. Upon a swipe down or swipe hold
downwards interaction being performed, the ‘swipeDirection’

enumerator object is set to ‘Down’ or ‘HeldDown’. This is used to
invoke ‘Z’ dimensional translation of the bookshelf book object,

within the ‘ObtainPianoMusicSheetBook’ method, in the
‘PuzzleRoomTwo’ class. The translation of the bookshelf book object
is determined by the gesture interactions difference in current and

previous positions; this is calculated in the ‘GestureInteraction’
method, where the determined difference is assigned to the

‘swipeDifference’ float variable.

Touch-based interaction
with the bookshelf book

object, to obtain the
bookshelf book object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the bookshelf book
object is pressed within any screen point occupied by the

application. This invokes the ‘GameObjectObtained’ method within
the ‘PuzzleRoomTwo’ script, which reduces a passed objects scale

and sets it to inactive upon reaching (0, 0, 0). As a method returning
a Boolean state, ‘true’ is returned if the bookshelf book objects scale

is (0, 0, 0), which is further used to identify the
‘MusicSheetBookObtained’ Boolean variable as ‘true; which is then
used to invoke the ‘ExitPianoMusicSheetBookView’ method within

the ‘PuzzleRoomTwo’ script.
3 Activate the

bookstand stand
hanging lights, to

enable the
bookstand stand

interaction.

Look-based interaction
with the bookstand

object, to invoke the
lights on animation state

of the hanging light
object.

Look-based interaction is implemented in the
‘RaycastToObjectsCameraView’ method, within the

‘InteractionController’ class. The method casts a ray from the centre
of the first-person cameras viewport and compares the colliding

objects tag with the object tag passed in the method. As a method
returning a Boolean state, ‘true’ is returned for the bookstand

object seen. This invokes the active animation state for the music
box stand object lights, within the ‘PianoPuzzleSolving’ method, in

the ‘PuzzleRoomTwo’ script.
4 Place the

bookshelf book,
to enable the

bookshelf book
interaction.

Touch-based interaction
with the bookstand
object, to enter the

bookstand interaction
view, via the first-person

camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the bookstand object
is pressed within any screen point occupied by the application. This

invokes the ‘EnterPianoBookStandView’ method within the
‘PuzzleRoomTwo’ script.

Touch-based interaction
with the bookstand shelf

object, to place the
bookshelf book object

that was previously
obtained, onto the

bookstand shelf object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the bookstand shelf
object is pressed within any screen point occupied by the

application. This is used to alternate the value of the
‘MusicSheetBookPlaced’ Boolean variable, to ‘true’; which is then

used to invoke the ‘MusicSheetBookFlicker’ method within the
‘PuzzleRoomTwo’ script.

5 Obtain the music
sheet, to enable
the piano strobe

lights to be
activated.

Swipe gesture-based
interaction when within

the bookstand book
object interaction view,
to invoke the page open

and close animation
states and accompanying

audio cues.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’
method. Upon a swipe left or swipe right interaction being

performed, the ‘swipeDIrection’ enumerator object is set to ‘Left’ or
‘Right’. This is used to invoke the page open and close animation
states for the bookshelf book object, relative to the state of the

‘musicSheetBookCurrentPage’ enumerator object, within the
‘MusicSheetBookFlicker’ method, in the ‘PuzzleRoomTwo’ class.

Swipe-drag gesture-based
interaction when within

the bookstand book
object interaction view,

to invoke procedural
translation of the music

sheet object.

Swipe-drag gesture-based interaction for procedural translation is
governed by the ‘InteractionController’ class, within the

‘GestureInteraction’ method. Upon a swipe up or swipe hold
upwards interaction being performed, the ‘swipeDirection’

enumerator object is set to ‘Up’ or ‘HeldUp’. This is used to invoke
‘X’ dimensional translation of the music sheet object, within the

‘MusicSheetBookFlicker’ method, in the ‘PuzzleRoomTwo’ class. The
translation of the music sheet object is determined by the gesture

interactions difference in current and previous positions; this is
calculated in the ‘GestureInteraction’ method, where the

determined difference is assigned to the ‘swipeDifference’ float
variable.

Touch-based interaction
with the music sheet
object, to obtain the
music sheet object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the music sheet object
is pressed within any screen point occupied by the application. This

invokes the ‘GameObjectObtained’ method within the
‘PuzzleRoomTwo’ script, which reduces a passed objects scale and
sets it to inactive upon reaching (0, 0, 0). As a method returning a

Boolean state, ‘true’ is returned if the music sheet objects scale is (0,
0, 0), which is further used to identify the ‘MusicSheetObtained’

Boolean variable as ‘true; which is then used to invoke the
‘ExitPianoBookStandView’ method within the ‘PuzzleRoomTwo’

script.
6 Play the piano to

escape the room.
Touch-based interaction
with the piano object, to

enter the piano
interaction view, via the

first-person camera
object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the piano object is
pressed within any screen point occupied by the application. This

invokes the ‘EnterPianoView’ method within the ‘PuzzleRoomTwo’
script.

Touch-based interaction
with the piano shelf

object, to enter the piano
shelf interaction view, via
the first-person camera

object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the piano shelf object
is pressed within any screen point occupied by the application. This

invokes the ‘EnterPianoShelfView’ method within the
‘PuzzleRoomTwo’ script.

Touch-based interaction
with the piano shelf

object, to place the music
sheet object that was

previously obtained, onto
the piano shelf object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the piano shelf object
is pressed within any screen point occupied by the application. This

is used to alternate the value of the ‘PianoMusicSheetPlaced’
Boolean variable, to ‘true’; which is then used to invoke the

‘ExitPianoShelfView’ method within the ‘PuzzleRoomTwo’ script.
Touch-based interaction

with the piano key
shutter object, to enter

the piano key interaction
view, via the first-person

camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the piano key shutter
object is pressed within any screen point occupied by the

application. This invokes the ‘EnterPianoKeyView’ method within
the ‘PuzzleRoomTwo’ script.

Touch-based interaction
with the piano key

objects, to invoke the
piano key played

animation states and
their accompanying audio
cues when pressed. Also,

to press the piano key
objects that formulate

the correct sequence, to
complete the puzzle.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if a piano key object is
pressed within any screen point occupied by the application. This is
used to add string entries to the ‘pianoKeyNoteInput’ list of strings;

upon a piano key object being pressed for the current attempt of
the puzzle, if another piano key object is not pressed within five

seconds, the ‘pianoKeyViewActive’ Boolean variable is set to ‘false’
and the ‘pianoKeyNoteReset’ Boolean variable is set to ‘true’. This is

identified by the invocation of the ‘CheckPianoNotesPlayed’
method, every frame, which utilises the ‘pianoKeyNotePlayedTimer’
float variable, to accumulate the time for when a piano key object
was last interacted with. Alternatively, if the list of strings contains
thirteen entries which are determined to be wrong in sequence, as

checked by ‘CheckPianoNotesPlayed’ every frame, the Boolean
variable states are also alternated. This results in the invocation of
the ‘EnterPianoShelfView’ method, which resets the piano puzzle

variables states.
Swipe gesture-based

interaction when within
the piano key and piano
shelf object interaction
views, to alternate the
active interaction view,

via the first-person
camera.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a swipe hold up or swipe hold down interaction being
performed, the ‘swipeDIrection’ enumerator object is set to

‘HeldUp’ or ‘HeldDown’. This is used to alternate the value of the
‘pianoKeyViewActive’ Boolean variable within the

‘AlternatePianoCamera’ method; which is then used to invoke the
‘EnterPianoShelfView’ method if ‘false’, and the

‘EnterPianoKeyView’ if ‘true’, which are integrated within the
‘PianoPuzzleSolving’ method in the ‘PuzzleRoomTwo’ class.

Appendix M:

Below, features the telephone puzzle implementation, as advertised in the first puzzle room scene. A
step-by-step process for the puzzles gameplay structure is accounted for, alongside the mechanisms
supporting each of the phases that are mentioned; all of the mechanisms that are detailed in the
following table, reside within the ‘InteractionController’, ‘SubtitleController’ and ‘PuzzleRoomOne’
classes (see Appendix H).

Table 5: Puzzle room one, telephone puzzle mechanical implementation, detailing the functional invocation of the puzzle’s

components

Telephone puzzle: mechanical implementation
Step Process Mechanisms employed How have the mechanisms been addressed?

1 Answer the
telephone to
activate the

ornament stand
interactions in the

scene.

Touch-based interaction
with the telephone
object, to enter the

telephone interaction
view, via the first-person

camera object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the telephone object
is pressed within any screen point occupied by the application. This

invokes the ‘EnterTelephoneView’ method within the
‘PuzzleRoomOne’ script.

Swipe gesture-based
interaction when within

telephone interaction
view, to invoke the
answer telephone

animation state of the
telephone earpiece

object.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a held upwards interaction being performed, the
‘swipeDIrection’ enumerator object is set to ‘HeldUp’. This is used to
invoke the ‘PickUpTelephone’ method within the ‘PuzzleRoomOne’

script.

2 Activate the
ornament stand
hanging lights to
enable the face

mask and cabinet
window

interactions.

Look-based interaction
with the ornament stand

objects, to invoke the
lights on animation state

of the hanging light
objects.

Look-based interaction is implemented in the
‘RaycastToObjectsCameraView’ method, within the

‘InteractionController’ class. The method casts a ray from the centre
of the first-person cameras viewport and compares the colliding

objects tag with the object tag passed in the method. As a method
returning a Boolean state, ‘true’ is returned for each ornament

stand object seen. This invokes the active animation state for each
of the ornament stand lights, within the ‘TelephonePuzzleSolving’

method, in the ‘PuzzleRoomOne’ script.
3 Break the glass

cabinet window
to gain access to
the cabinet note,
for allowing the

cabinet note to be
obtained.

Touch-based interaction
with the glass cabinet

window object, to invoke
the glass breaking

animation of the glass
window object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the glass cabinet
window object is pressed within any screen point occupied by the

application. This invokes the active animation state of the glass
cabinet window object, within the ‘PuzzleRoomOne’ script.

4 Obtain the
cabinet note to

enable clipboard,
audio device and
Morse code book

interactions.

Touch-based interaction
with the cabinet note
object, to obtain the
cabinet note object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the cabinet note
object is pressed within any screen point occupied by the

application. This invokes the ‘GameObjectObtained’ method within
the ‘PuzzleRoomOne’ script, which reduces a passed objects scale

and sets it to inactive upon reaching (0, 0, 0). As a method returning
a Boolean state, ‘true’ is returned if the cabinet note objects scale is

(0, 0, 0), which is further used to identify the ‘NoteObtained’
Boolean variable as ‘true’.

5 Place the cabinet
note onto the
clipboard to

enable telephone
and telephone

button
interactions.

Touch-based interaction
with the clipboard object

to enter the clipboard
interaction view, via the

first-person camera
object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the clipboard object is
pressed within any screen point occupied by the application. This is

used to invoke the ‘EnterClipboardView’ method within the
‘PuzzleRoomOne’ script.

Touch-based interaction
with the clipboard object,
to place the cabinet note

object that was
previously obtained, onto

the clipboard object.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the clipboard object is
pressed within any screen point occupied by the application. This is
used to alternate the value of the ‘NotePlaced’ Boolean variable, to
‘true’; which is then used to invoke the ‘ExitClipboardView’ method

within the ‘PuzzleRoomOne’ script.
6 Play the audio

device audio cue,
to auditorily

identify the last
segment of the

telephone
number.

Touch-based interaction
with the audio device
object, to invoke the

Morse code audio cue
and the Morse code
subtitle sequence.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the audio device
object is pressed within any screen point occupied by the

application. This is used to invoke the Morse code audio cue and
accompanying subtitles within the ‘TelephonePuzzleSolving’
method, in the ‘PuzzleRoomOne’ script. Subtitle invocation is

addressed by the integration of the ‘SubtitleSequence’ method,
which originates from the ‘SubtitleController’ class.

7 Read the Morse
code translation
page of book, to

translate the
Morse code audio

cue emitted by
the audio device,

to a number
format.

Touch-based interaction
with the Morse code

book object, to enter the
Morse code book

interaction view, via the
first-person camera.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the Morse code book
object is pressed within any screen point occupied by the

application. This is used to invoke the ‘EnterMorseCodeBookView’
method within the ‘PuzzleRoomOne’ script.

8 Dial the telephone
to escape the
puzzle room.

Touch-based interaction
with the telephone
object, to enter the

telephone interaction
view, via the first-person

camera.

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

returning a Boolean state, ‘true’ is returned if the telephone object
is pressed within any screen point occupied by the application. This

invokes the ‘EnterTelephoneView’ method within the
‘PuzzleRoomOne’ script.

Touch-based interaction
with the telephone

button objects, to invoke
the telephone button

Touch-based interaction is manged by the ‘InteractionController’
class, within the ‘RaycastHitInput’ method. The method compares

the tag of the object that a ray is casted to, from within the
‘RaycastToObjectsMouseInteraction’ method. As a method

pressed animation states
and their accompanying

audio cues when pressed.
Also, to dial telephone
numbers, to enable the

invocation of the answer
telephone animation

state, for the telephone
earpiece object.

returning a Boolean state, ‘true’ is returned if a telephone button
object is pressed within any screen point occupied by the

application. This is used to add integer entries to the
‘telephoneButtonInput’ list of integers; upon the list accumulating

more than eleven entries, the text mesh variable
‘telephoneScreenText’ is reset to ‘””’, as well, the

‘telephoneButtonInput’ list is emptied.

Swipe gesture-based
interaction when within

the telephone interaction
view, to invoke the
answer telephone

animation state of the
telephone earpiece

object and accompanying
audio cues.

Swipe gesture-based interaction is governed by the
‘InteractionController’ class, within the ‘GestureInteraction’

method. Upon a held upwards interaction being performed, the
‘swipeDIrection’ enumerator object is set to ‘HeldUp’. This is used to
invoke the ‘PickUpTelephone’ method within the ‘PuzzleRoomOne’
script; which is accompanied by one of two audio cues, determined
by the value of the ‘TelephoneNumberSequenceCorrect’ Boolean

variable.

Appendix N:

Table 6: Unit test cases, user interface elements

Case Summary Process Actual result(s) Expected result(s) Passed?
1 Disclaimer

window button
appears upon
the start button
being interacted
with.

Interact with the
start button
when loaded
into the loading
screen scene.

‘displayDisclaimer’ returns ‘true’
when the start button is
interacted with.

‘displayDisclaimer’ returns ‘true’
when the start button is
interacted with.

2 Disclaimer
window
disappears upon
the disclaimer
window button
being interacted
with.

Interact with the
disclaimer
window button
when the
disclaimer
window appears.

‘displayDisclaimer’ returns ‘false’
when the disclaimer window
button is interacted with.

‘displayDisclaimer’ returns ‘false’
when the disclaimer window
button is interacted with.

3 Pause menu can
be navigated
upon the pause
button being
interacted with.

Interact with the
pause button
when the game
session is not
paused.

‘displayPauseMenu’ returns
‘true’ when the pause button is
interacted with and returns
‘false’, when the resume button
is interacted with.

‘displayPauseMenu’ returns
‘true’ when the pause button is
interacted with and returns
‘false’, when the resume button
is interacted with.

4 Subtitle
activeness can
be toggled
within the pause
menu, upon the
game session
being paused.

Interact with the
subtitle toggle
button within
the pause menu
when the game
session is
paused.

‘subtitlesActive’ returns ‘false’
when the subtitle button is
initially interacted with and
returns ‘true’, when interacted
with alternatively.

‘subtitlesActive’ returns ‘false’
when the subtitle button is
initially interacted with and
returns ‘true’, when interacted
with alternatively.

5 Player flashlight
object
activeness can
be toggled
when the
flashlight toggle
button is being
interacted with.

Interact with the
flashlight toggle
button within
the UI canvas
when the game
session is not
paused.

‘flashlightActive’ returns ‘false’
when the subtitle button is
initially interacted with and
returns ‘true’, when interacted
with alternatively.

‘flashlightActive’ returns ‘false’
when the subtitle button is
initially interacted with and
returns ‘true’, when interacted
with alternatively.

6 Camera
perspective
alternates upon
the camera
toggle button
being interacted
with.

Interact with the
camera toggle
button within
the UI canvas
when the game
session is not
paused.

‘thirdPersonCameraActive’
returns ‘true’ when the camera
toggle button is initially
interacted with and returns
‘false’, when interacted with
alternatively.

‘thirdPersonCameraActive’
returns ‘true’ when the camera
toggle button is initially
interacted with and returns
‘false’, when interacted with
alternatively.

7 Player object
traverses upon
the joystick
touch field
being interacted
with.

Interact with the
joystick touch
filed within the
UI canvas when
the game session
is not paused.

‘inputDirection’ does not return
(0, 0) when the joystick touch
field is interacted with.

‘inputDirection’ does not return
(0, 0) when the joystick touch
field is interacted with.

8 Player object
traversal is reset
upon a joystick
touch field
interaction
ending.

Interact with the
joystick touch
filed within the
UI canvas when
the game session
is not paused.

‘inputDirection’ returns (0, 0)
when the joystick touch field is
interacted with and then
disassociated with.

‘inputDirection’ returns (0, 0)
when the joystick touch field is
interacted with and then
disassociated with.

9 UI elements
become inactive
upon the first-
person camera
entering an
object views
perspective.

Interact with an
object that is
interactable and
requires first-
person
perspective
change.

‘buttonsEnabled’ returns ‘false’
when the first-person camera
enters an object views
perspective.

‘buttonsEnabled’ returns ‘false’
when the first-person camera
enters an object views
perspective.

10 UI elements
become active
upon the first-
person camera
exiting an object
views
perspective.

Interact with an
object that is
interactable and
requires first-
person
perspective
change.

‘buttonsEnabled’ returns ‘true’
when the first-person camera
exits an object views perspective.

‘buttonsEnabled’ returns ‘true’
when the first-person camera
exits an object views perspective.

11 Camera
perspective
cannot be
alternated upon
the player
object colliding
with the
wardrobe
trigger object,
and when the
camera toggle
button is being
interacted with.

Interact with the
camera toggle
button within
the UI canvas
when the game
session is not
paused, and
when the player
object is colliding
with the
wardrobe trigger
object.

‘thirdPersonCameraActive’
returns ‘false’ when the camera
toggle button is interacted with,
whilst the player object is
colliding with the wardrobe
trigger object.

‘thirdPersonCameraActive’
returns ‘false’ when the camera
toggle button is interacted with,
whilst the player object is
colliding with the wardrobe
trigger object.

Table 7: Unit test cases, player

Case Summary Process Actual result(s) Expected result(s) Passed?
1 Player object

cannot jump
when not
grounded.

Interact with the
jump button,
whilst the player
object is not
grounded.

‘playerGrounded’ returns ‘false’
when the player object is mid-air
and returns ‘true’, when the
player object is colliding with the
grounding plane.

‘playerGrounded’ returns ‘false’
when the player object is mid-air
and returns ‘true’, when the
player object is colliding with the
grounding plane.

2 Player jump
sound is played
when the player
object jumps.

Interact with the
jump button,
whilst the player
object is
grounded.

‘playJumpSound’ returns ‘true’
when the player object is mid-air
and returns ‘false’, when the
player object is colliding with the
grounding plane.

‘playJumpSound’ returns ‘true’
when the player object is mid-air
and returns ‘false’, when the
player object is colliding with the
grounding plane.

3 Player jump
sound is played
when the player
object is
grounded from
jumping.

Interact with the
jump button,
whilst the player
object is
grounded.

‘playLandSound’ returns ‘false’
when the player object is mid-air
and returns ‘true’, upon the
player object colliding with the
grounding plane.

‘playLandSound’ returns ‘false’
when the player object is mid-air
and returns ‘true’, upon the
player object colliding with the
grounding plane.

4 Player footsteps
sound is played
in the order of
the player
objects turning
direction, when
the payer object
does not
traverse.

Interact with the
joystick touch
field, whilst the
player object is
grounded.

‘playerLeftFootstepSoundPlaying’
returns ‘false’ when the player
object is rotating right and
returns ‘true’, upon the player
object rotating left when
grounded.

‘playerLeftFootstepSoundPlaying’
returns ‘false’ when the player
object is rotating right and
returns ‘true’, upon the player
object rotating left when
grounded.

5 Player object
can only
traverse upon
input being
enabled.

Interact with
objects and
enter object
view
perspectives,
attempt to
interact with UI
canvas and use
key input.

‘inputEnabled’ returns ‘false’
when the first-person camera is
inside an object view perspective
and returns ‘true’ when the first-
person camera is not within an
object view perspective.

‘inputEnabled’ returns ‘false’
when the first-person camera is
inside an object view perspective
and returns ‘true’ when the first-
person camera is not within an
object view perspective.

6 Player idle
animation is not
invoked upon
the game
session being
paused, and
when the first-
person camera
is within an
object view.

Interact with
objects and
enter object
view
perspectives,
pause the game
session via the
pause menu UI.

‘playerInsideObjectView’ returns
‘true’ when the first-person
camera is inside an object view
perspective and returns ‘false’
when the first-person camera is
not within an object view
perspective.

‘playerInsideObjectView’ returns
‘true’ when the first-person
camera is inside an object view
perspective and returns ‘false’
when the first-person camera is
not within an object view
perspective.

7 Player object is
identified as
being within the
wardrobe
object, upon
colliding with
the wardrobe
trigger object.

Interact with the
jump button and
joystick touch
field, whilst the
player object is
grounded and is
close by to the
wardrobe object.

‘puzzleRoomTwoCollision’
identifies as ‘WardrobeTrigger’
upon the player object colliding
with the wardrobe trigger object
and identifies as empty when the
player object is not colliding with
the wardrobe trigger object.

‘puzzleRoomTwoCollision’
identifies as ‘WardrobeTrigger’
upon the player object colliding
with the wardrobe trigger object
and identifies as empty when the
player object is not colliding with
the wardrobe trigger object.

Table 8: Unit test cases, puzzle

Case Summary Process Actual result(s) Expected result(s) Passed?
1 Game object

can be
obtained upon
being
interacted with.
Game object
becomes
inactive upon
being obtained.

Interact with an
object that is
interactable and
obtainable.

‘GameObjectObtained()’ returns
‘true’ upon the game objects
scale reducing to (0, 0, 0), and
returns ‘false’ whilst the game
objects scale is not (0, 0, 0).

‘GameObjectObtained()’ returns
‘true’ upon the game objects
scale reducing to (0, 0, 0), and
returns ‘false’ whilst the game
objects scale is not (0, 0, 0).

2 Game objects
transform can
be identified as
being at its
prior position
and rotation
offset.

Compare the
position and
rotation
properties of a
game object
with position
and rotation
values.

‘GameObjectAtPreviousTransform
()’ returns the desired Boolean
state passed, and when the game
objects position and rotation
offset is equal to the position and
rotation values passed.

‘GameObjectAtPreviousTransform
()’ returns the desired Boolean
state passed, and when the game
objects position and rotation
offset is equal to the position and
rotation values passed.

3 Camera objects
transform can
be identified as
being at a
position and
rotation offset.

Compare the
position and
rotation
properties of
the camera with
position and
rotation values.

‘CameraAtTransform()’ returns
‘true’ upon the camera objects
position and rotation being equal
to the position and rotation
values passed.

‘CameraAtTransform()’ returns
‘true’ upon the camera objects
position and rotation being equal
to the position and rotation
values passed.

4 Camera objects
transform can
be stored as a
position and
rotation offset.

Compare the
position and
rotation values
store before and
after the camera
objects
transform
updates.

‘StorePreviousTransform()’
returns a vector and quaternion
not equal to ‘0’, thereby storing
the camera objects position and
rotation offset to the position and
rotation values passed.

‘StorePreviousTransform()’
returns a vector and quaternion
not equal to ‘0’, thereby storing
the camera objects position and
rotation offset to the position and
rotation values passed.

5 Game objects
transform can
be identified as
being at
another game

Compare the
position and
rotation
properties of
the game object

‘ObjectAtTransform()’ returns
‘true’ upon the game objects
transform being identical to the
target game objects transform.

‘ObjectAtTransform()’ returns
‘true’ upon the game objects
transform being identical to the
target game objects transform.

objects position
and rotation.

with the
position and
rotation values
of another game
object.

Appendix O:

Table 9: Black-box test cases, user interface elements

Case Summary Process Expected result(s) Actual result(s) Passed?
1 Disclaimer window

appears with the
according disclaimer
text and disappears
when the disclaimer
window button is
being interacted
with, via touch.

Start button is pressed at
the initial scene when the
game is loaded. The
disclaimer window button
is pressed when the
disclaimer window
appears.

Start button is pressed at the
initial scene when the game
is loaded, the disclaimer GUI
window appears in the
centre of the screen with the
according text, when the
disclaimer window (button)
is pressed, the disclaimer
window disappears and the
following scene is loaded.

Start button is pressed at the
initial scene when the game
is loaded, the disclaimer GUI
window appears in the
centre of the screen with the
according text, when the
disclaimer window (button)
is pressed, the disclaimer
window disappears and the
following scene is loaded.

2 Player object travels
upwards and
descends gradually
when jump button is
pressed.

Jump button embedded
within the UI is pressed
when the player object is
grounded.

Player object travels
upwards once jump button is
pressed; the player object
gradually descends due to
gravity parameter set.

Player object travels
upwards once jump button is
pressed; the player object
gradually descends due to
gravity parameter set.

3 Player object rotates
around its own axis
positively in the ‘Y’
axis when the
joystick is held right.

Joystick embedded within
the UI is held right via
touch and drag gesture.

Player object rotates
rightwards around its own
axis in the ‘Y’ axis at a
constant rate when joystick
is held right.

Player object rotates
rightwards around its own
axis in the ‘Y’ axis at a
constant rate when joystick
is held right.

4 Player object rotates
around its own axis
negatively in the ‘Y’
axis when the
joystick is held left.

Joystick embedded within
the UI is held left via touch
and drag gesture.

Player object rotates
leftwards around its own axis
in the ‘Y’ axis at a constant
rate when joystick is held
left.

Player object rotates
leftwards around its own axis
in the ‘Y’ axis at a constant
rate when joystick is held
left.

5 Player object
traverses’ forwards
in the current facing
direction when
joystick is held up.

Joystick embedded within
the UI is held up via touch
and drag gesture

Player object traverses’
forwards in the current
facing direction at a constant
rate when the when joystick
is held upwards.

Player object traverses’
forwards in the current
facing direction at a constant
rate when the when joystick
is held upwards.

6 Player object
traverses’ backwards
in the current facing
direction when
joystick is held
down.

Joystick embedded within
the UI is held down via
touch and drag gesture.

Player object traverses’
backwards in the current
facing direction at a constant
rate when the when joystick
is held downwards.

Player object traverses’
backwards in the current
facing direction at a constant
rate when the when joystick
is held downwards.

7 Camera perspective
alternates between
the first and third
person perspectives
when the camera
cycle button is
pressed.

Camera cycle button
embedded within the UI is
pressed.

Camera perspective changes
from the current perspective
to the alternate perspective,
upon the camera cycle
button being pressed.

Camera perspective changes
from the current perspective
to the alternate perspective,
upon the camera cycle
button being pressed.

8 Player flashlight
object toggles active
state when flashlight
cycle button is
pressed.

Flashlight cycle button
embedded within the UI is
pressed.

Flashlight light source
alternates between active
and inactive upon the
flashlight cycle button being
pressed.

Flashlight light source
alternates between active
and inactive upon the
flashlight cycle button being
pressed.

9 Joystick image
recentres to its
anchored position,
upon the interaction
between the touch
field ending.

Joystick embedded within
the UI is interacted with
via touch or drag gestures.

Joystick image recentres to
the touch field, where it is
anchored upon the
interaction ending.

Joystick image recentres to
the touch field, where it is
anchored upon the
interaction ending.

10 Pause menu
appears, UI
elements become
inactive and the

Pause button embedded
within the UI is pressed.

Pause menu appears when
the pause button is pressed,
UI elements are not visible,

Pause menu appears when
the pause button is pressed,
UI elements are not visible

game session does
not update when
pause button is
pressed.

and the game session does
not update.

and the game session does
not update.

11 Pause menu
disappears, UI
elements become
active and the game
session updates
when the resume
button is pressed.

Resume button embedded
within the UI is pressed.

Pause menu disappears
when the resume button is
pressed, UI elements are
visible, and the game session
updates.

Pause menu disappears
when the resume button is
pressed, UI elements are
visible, and the game session
updates.

12 Subtitle activeness is
alternated when
subtitle cycle button
is pressed.

Subtitles cycle button
embedded within the UI is
pressed.

Subtitle activeness alternates
between active and inactive
upon the subtitle cycle
button being pressed,
subtitle cycle buttons texture
updates accordingly.

Subtitle activeness alternates
between active and inactive
upon the subtitle cycle
button being pressed,
subtitle cycle buttons texture
updates accordingly.

13 Application closes
when application
exit button is
pressed.

Application exit button
embedded within the UI is
pressed.

Application closes upon the
application exit button being
pressed.

Application closes upon the
application exit button being
pressed.

14 All UI elements are
deactivated upon
the player entering
an object interaction
view.

Player interacts with an
interactable rigid object
with collider
component(s).

All UI element images
disappear, and the UI
elements buttons become
unresponsive, player object
movement is not
interrupted.

All UI element images
become inactive and the UI
elements buttons become
unresponsive, player object
movement is not
interrupted.

15 All UI elements are
reactivated upon the
player exiting an
object interaction
view.

Player complete
interaction with an
interactable rigid object
with collider
component(s).

All UI element images
reappear, and the UI
element buttons become
responsive again, player
object movement can be
invoked.

All UI element images
reappear, and the UI
element buttons become
responsive again, player
object movement can be
invoked.

16 Upon the player
entering the
wardrobe rigid
object and invoking
the hide sequence in
the second puzzle
room, camera cycle
button can be
interacted with, but
camera perspective
does not alternate.

Camera cycle button
embedded within the UI is
pressed, when player
object is situated within
the wardrobe rigid object.

Camera cycle button can be
pressed and animates within
the UI; however, the camera
perspective remains within
the first-person.

Camera cycle button can be
pressed and animates within
the UI; however, the camera
perspective remains within
the first-person.

Table 10: Black-box test cases, player

Case Summary Process Expected result(s) Actual result(s) Passed?
1 Player object

deflects off objects,
does not penetrate
through other rigid
objects with collider
component(s).

Player object traverses
towards rigid object with
collider component(s) until
impact, where it
continually collides.

Player object is continually
forced from the object it
collides with, the player
object remains upright and
on a surface; player object
does not penetrate through
object.

Player object is continually
forced from the object it
collides with, the player
object remains upright and
on a surface; player object
does not penetrate through
object.

2 Player object does
not stick to other
rigid objects with
collider
component(s) and
physic material(s).

Player object traverses
towards rigid object with
collider component(s) and
physic material(s) until
impact, where the player
object then jumps and
continually traverses
towards the object mid-air.

Player object does not stick
to other rigid objects with
collider component(s) and
physic material(s), player
gradually falls until being
surfaced with the grounding
plane.

Player object does not stick
to other rigid objects with
collider component(s) and
physic material(s), player
gradually falls until being
surfaced with the grounding
plane.

3 Player jumping and
landing sounds as
well as animation(s)
are invoked upon

Jump button embedded
within the UI is pressed
when the player object is
grounded.

Player object traverses
upwards and the jumping
animation is invoked as well
as the jumping sound, upon
the player traversing

Player object traverses
upwards and the jumping
animation is invoked as well
as the jumping sound, upon
the player traversing

the player object
jumping.

downwards and becoming
grounded, the landing sound
is played.

downwards and becoming
grounded, the landing sound
is played.

4 Player objects
movement speed
and breathing
sounds volume and
pitch properties
adjust with the
offset of the joystick.

Joystick embedded within
the UI is held down via
touch and drag gesture.

Player objects movement
speed and breathing sound
sounds volume and pitch
properties increase when the
joystick is held further away
from its anchored position,
creating the impression of a
faster movement pace.

Player objects movement
speed and breathing sound
sounds volume and pitch
properties increase when the
joystick is held further away
from its anchored position,
creating the impression of a
faster movement pace.

5 Player objects
animation controller
enables the player
to jump, turn and
traverse in the
facing direction
simultaneously.

Joystick embedded within
the UI is held down via
touch and drag gesture,
whilst the jump button
embedded within the UI is
pressed when the player
object is grounded
simultaneously.

Player objects animation
controller utilises blend tree
animation states to jump,
turn and traverse in the
facing direction
simultaneously, where all
sounds accompanying the
player objects movement are
invoked also.

Player objects animation
controller utilises blend tree
animation states to jump,
turn and traverse in the
facing direction
simultaneously, where all
sounds accompanying the
player objects movement are
invoked also.

6 Player object enters
idle animation state
when there is no
interaction with the
UI elements.

Launch the application and
load into a scene. Also,
interact with the joystick
or jump button.

Player objects animation
controller invokes the idle
state, where the
corresponding breathing
sound is played, previous
animation state sounds are
transitioned from.

Player objects animation
controller invokes the idle
state, where the
corresponding breathing
sound is played, previous
animation state sounds are
transitioned from.

7 Player object turns
and traverses and
invokes footstep
sounds to simulate
walking, only when
grounded.

Joystick embedded within
the UI is held down via
touch and drag gesture,
whilst the player object is
grounded.

Player footstep sounds are
invoked when the player
object is grounded and is
traversing or turning.
Meanwhile, footstep sounds
are not invoked whilst player
object is not grounded, not
turning, or not traversing.

Player footstep sounds are
invoked when the player
object is grounded and is
traversing or turning.
Meanwhile, footstep sounds
are not invoked whilst player
object is not grounded, not
turning, or not traversing.

8 Player object is
facing a rigid object
relatively close with
collider
component(s),
player animation
sounds are not
invoked but are
otherwise.

Player object traverses
towards rigid object with
collider component(s) until
they are situated close
together.

Player animation sounds are
not invoked upon the player
object becoming within close
facing range of a rigid object
with collider component(s).
However, player animations
sounds are invoked upon the
player object not being
within close facing range of
said object(s).

Player animation sounds are
not invoked upon the player
object becoming within close
facing range of a rigid object
with collider component(s).
However, player animations
sounds are invoked upon the
player object not being
within close facing range of
said object(s).

9 Player object
enables door rigid
object animations to
be triggered upon
colliding with door
trigger
component(s), when
a puzzle room is
complete or when
transitioning to the
next room in the
sequence.

Player object traverses
towards door rigid object
with trigger component(s)
until impact, the door
animations will be or not
be invoked, depending on
the puzzle room
completion states.

Player object is able to
traverse beyond the door
rigid object upon a puzzle
rooms interactions being
complete or when
transitioning to the next
puzzle room in the sequence.
Meanwhile, player object is
not able to traverse beyond
the door rigid object when a
puzzle rooms interactions
are not complete, or when
attempting to transition to
puzzle rooms that are not
consecutive to the room
completed prior.

Player object is able to
traverse beyond the door
rigid object upon a puzzle
rooms interactions being
complete or when
transitioning to the next
puzzle room in the sequence.
Meanwhile, player object is
not able to traverse beyond
the door rigid object when a
puzzle rooms interactions
are not complete, or when
attempting to transition to
puzzle rooms that are not
consecutive to the room
completed prior.

10 Player object is only
able to transition to
the jumping state
upon being
grounded.

Jump button embedded
within the UI is pressed
continually when the
player is grounded and
mid-air.

Player object is able to jump
from the initial state of being
grounded and when being
grounded from landing to a
jump prior. Player object is
not able to jump repetitively
otherwise.

Player object is able to jump
from the initial state of being
grounded and when being
grounded from landing to a
jump prior. Player object is
not able to jump repetitively
otherwise.

11 Player object is only
able to enter the

Jump button embedded
within the UI is pressed

Player object is able to jump
into wardrobe but unable to

Player object is able to jump
into wardrobe but unable to

wardrobe rigid
object in the second
puzzle room upon by
jumping.

whilst the joystick
embedded within the UI is
held in the direction of the
wardrobe rigid object.

without jumping. Player
object will continually collide
with wardrobe shelf rigid
object when joystick is held
towards the direction of the
wardrobe, when the player
object is not jumping.

without jumping. Player
object will continually collide
with wardrobe shelf rigid
object when joystick is held
towards the direction of the
wardrobe, when the player
object is not jumping.

12 Upon the player
entering the
wardrobe rigid
object and invoking
the hide sequence in
the second puzzle
room, wardrobe
door animation is
invoked upon
colliding with
wardrobe trigger
component.

Jump button embedded
within the UI is pressed
whilst the joystick
embedded within the UI is
held in the direction of the
wardrobe rigid object,
player objects enters
wardrobe rigid object.

Player object enters the
wardrobe rigid object and
upon impact with the
wardrobe trigger
component. Wardrobe door
animation is invoked where
the player object is
encapsulated within the
wardrobe rigid object.

Player object enters the
wardrobe rigid object and
upon impact with the
wardrobe trigger
component. Wardrobe door
animation is invoked where
the player object is
encapsulated within the
wardrobe rigid object.

Table 11: Black-box test cases, object interaction within puzzle room two, safe puzzle

Case Summary Process Expected result(s) Actual result(s) Passed?
1 Picture rigid object

covering safe rigid
object animates,
upon interacting
with the picture rigid
object via touch and
whilst being faced
towards.

Touch the picture rigid
object when the first-
person camera aligns the
picture rigid object in the
centre of the FOV.

Picture rigid object covering
safe rigid object animates,
when first-person camera
aligns the picture rigid object
in the centre of the FOV and
is touched upon.

Picture rigid object covering
safe rigid object animates,
when first-person camera
aligns the picture rigid object
in the centre of the FOV and
is touched upon.

2 First-person camera
enters safe object
view, upon the safe
rigid object’s being
interacted with via
touch and are being
faced towards.

Touch the safe rigid
objects when the first-
person camera aligns the
safe rigid object in the
centre of the FOV and
when the safe rigid object
is not centred.

First-person camera moves
and rotates towards the safe
view object that simulates
the perspective for the safe
object interaction, upon the
safe objects being touched
and whilst the first-person
camera is facing the safe
objects. Otherwise the first-
person camera remains at
the position and rotation of
the player object.

First-person camera moves
and rotates towards the safe
view object that simulates
the perspective for the safe
object interaction, upon the
safe objects being touched
and whilst the first-person
camera is facing the safe
objects. Otherwise the first-
person camera remains at
the position and rotation of
the player object.

3 Safe dial rigid object
rotates clockwise
upon the player
performing a swipe
left or held left
gesture interaction,
when within the safe
view objects
perspective.

Swipe left or hold left on
the devices screen when
within the safe view
objects perspective.

Safe dial rigid object rotates
clockwise for one frame
when a swipe left gesture
interaction is performed
within the safe view object
perspective. The safe dial
rigid objects rotation is
continued for every frame
that the gesture is held left.

Safe dial rigid object rotates
clockwise for one frame
when a swipe left gesture
interaction is performed
within the safe view object
perspective. The safe dial
rigid objects rotation is
continued for every frame
that the gesture is held left.

4 Safe dial rigid object
rotates anti-
clockwise upon the
player performing a
swipe right or held
right gesture
interaction, when
within the safe view
objects perspective.

Swipe right or hold right
on the devices screen
when within the safe view
objects perspective.

Safe dial rigid object rotates
anti-clockwise for one frame
when a swipe right gesture
interaction is performed
within the safe view object
perspective. The safe dial
rigid objects rotation is
continued for every frame
that the gesture is held right.

Safe dial rigid object rotates
anti-clockwise for one frame
when a swipe right gesture
interaction is performed
within the safe view object
perspective. The safe dial
rigid objects rotation is
continued for every frame
that the gesture is held right.

5 Safe dial rigid
objects rotation
resets upon a swipe
left or held left being
performed, when
the safe dial rigid
object is expected to

Swipe left or hold left on
the devices screen when
within the safe view
objects perspective and
when the current safe
puzzle iteration expects an
anti-clockwise interaction.

Safe dial rigid objects
rotation rotates towards a
neutral degree, the starting
rotation of the safe dial rigid
object.

Safe dial rigid objects
rotation rotates towards a
neutral degree, the starting
rotation of the safe dial rigid
object.

be rotating anti-
clockwise.

6 Safe dial rigid
objects rotation
resets upon a swipe
right or held right
being performed,
when the safe dial
rigid object is
expected to be
rotating clockwise.

Swipe right or hold right
on the devices screen
when within the safe view
objects perspective and
when the current safe
puzzle iteration expects a
clockwise interaction.

Safe dial rigid objects
rotation rotates towards a
neutral degree, the starting
rotation of the safe dial rigid
object.

Safe dial rigid objects
rotation rotates towards a
neutral degree, the starting
rotation of the safe dial rigid
object.

7 First-person camera
exits safe object
view, upon the safe
dial rigid objects
rotation being reset.

Swipe left or hold left on
the devices screen when
within the safe view
objects perspective and
when the current safe
puzzle iteration expects an
anti-clockwise interaction,
or alternative.

First-person camera moves
and rotates back towards the
player object whilst the safe
dial rigid objects rotation
rotates towards a neutral
degree.

First-person camera moves
and rotates back towards the
player object whilst the safe
dial rigid objects rotation
rotates towards a neutral
degree.

8 Safe dial puzzle
progress is reset
parallel to the safe
dial rigid objects
rotation being reset,
a swipe left or held
left interaction is
expected from the
first safe puzzle
iteration.

Swipe left or hold left on
the devices screen when
within the safe view
objects perspective, upon
entering the safe objects
view after the safe dial
rigid object has reset.

Swipe left or held left
interaction is required to
rotate the safe dial
clockwise, as the first safe
puzzle iteration. Upon a
swipe right or held right
interaction the safe dial rigid
objects rotation resets.

Swipe left or held left
interaction is required to
rotate the safe dial
clockwise, as the first safe
puzzle iteration. Upon a
swipe right or held right
interaction the safe dial rigid
objects rotation resets.

9 First-person camera
only enters safe
object view, upon
the safe rigid
object’s being
interacted with via
touch and are being
faced towards, as
well as when the
safe dial rigid objects
rotation has been
reset.

Touch the safe rigid object
when the first-person
camera aligns the safe
rigid object in the centre of
the FOV and when the safe
rigid object is not centred,
whilst when the safe dial
rigid object is rotating and
stationary.

First-person camera moves
and rotates towards the safe
view object that simulates
the perspective for the safe
object interaction, only when
the safe dial rigid objects
rotation has been reset and
is stationary, and the safe
objects are being faced
towards and have been
touched.

First-person camera moves
and rotates towards the safe
view object that simulates
the perspective for the safe
object interaction, only when
the safe dial rigid objects
rotation has been reset and
is stationary, and the safe
objects are being faced
towards and have been
touched.

10 First-person camera
exits safe object
view, upon the safe
puzzle being
complete via swipe
right or held right
gesture interaction.

Swipe right or hold right
on the devices screen
when within the safe view
objects perspective, until
the safe dial rigid objects
rotation equates to the
correct rotation for the
last iteration of the puzzle.

First-person camera moves
and rotates back towards the
player object whilst the safe
rigid object animates.

First-person camera moves
and rotates back towards the
player object whilst the safe
rigid object animates.

11 First-person camera
does not enter safe
object view, upon
the safe rigid objects
being interacted
with via touch and
are being faced
towards when the
safe puzzle is
complete.

Touch the safe rigid object
when the first-person
camera aligns the safe
rigid object in the centre of
the FOV and when the safe
rigid object is not centred,
upon completing the safe
puzzle.

First-person camera remains
at the position and rotation
of the player object. First-
person camera movement
does not resemble attempts
to enter the safe view
objects perspective.

First-person camera remains
at the position and rotation
of the player object. First-
person camera movement
does not resemble attempts
to enter the safe view
objects perspective.

Table 12: Black-box test cases, object interaction within puzzle room two, table puzzle

Case Summary Process Expected result(s) Actual result(s) Passed?
1 Table piece key

object can be
obtained when
being interacted
with via touch, upon

Player object traverses
towards safe rigid object
until relatively close
together and touches the
table piece key object.

Table piece key objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is

Table piece key objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is

the safe puzzle being
complete, the table
piece key object
animates as
disappearing and
emits sound

then played to signal its
possession.

then played to signal its
possession.

2 Table piece hanging
light object animates
and emits light
flickering sounds
upon the table piece
key object being
obtained and when
the table piece stand
rigid objects are
being faced towards.

Player object traverses
towards table piece stand
rigid objects until relatively
close together and facing
the table piece stand rigid
object.

Table piece hanging light
object animates and emits
light flickering sounds, when
the player is facing the table
piece stand rigid objects
within close range, and the
table piece key object has
been obtained.

Table piece hanging light
object animates and emits
light flickering sounds, when
the player is facing the table
piece stand rigid objects
within close range, and the
table piece key object has
been obtained.

3 First-person camera
enters table piece
stand object view,
upon the table globe
rigid object being
interacted with via
touch and are being
faced towards.

Touch the table globe rigid
object when the first-
person camera aligns the
table globe object in the
centre of the FOV and
when the table globe rigid
object is not centred.

First-person camera moves
and rotates towards the
table piece stand view object
that simulates the
perspective for the table
piece stand object
interaction, upon the table
globe object being touched
and whilst the first-person
camera is facing the table
globe object. Otherwise the
first-person camera remains
at the position and rotation
of the player object.

First-person camera moves
and rotates towards the
table piece stand view object
that simulates the
perspective for the table
piece stand object
interaction, upon the table
globe object being touched
and whilst the first-person
camera is facing the table
globe object. Otherwise the
first-person camera remains
at the position and rotation
of the player object.

4 Table piece key
object can be placed
upon the first-
person camera
entering the table
piece stand object
view, where the
table globe rigid
object and table
piece light plane
objects active
animation states are
invoked.

Touch the table piece key
holder object when within
the table piece stand view
objects perspective.

Table piece key is placed and
appears in the scene within
the table piece holder object.
Table globe rigid object and
table piece light plane
objects active animation
states are invoked.

Table piece key is placed and
appears in the scene within
the table piece holder
object. Table globe rigid
object and table piece light
plane objects active
animation states are
invoked.

5 First-person camera
exits table piece
stand object view,
upon the table piece
key object being
placed into the table
piece stand holder
object.

Touch the table piece
stand holder object when
within the table piece
stand view objects
perspective.

First-person camera exits the
table piece stand object view
upon the table piece key
object being placed into the
table piece stand holder
object.

First-person camera exits the
table piece stand object view
upon the table piece key
object being placed into the
table piece stand holder
object.

6 First-person camera
enters table globe
object view, upon
the table globe rigid
object being
interacted with via
touch and are being
faced towards, after
the table piece key
object being placed.

Touch the table globe rigid
object when the first-
person camera aligns the
table globe object in the
centre of the FOV and
when the table globe rigid
object is not centred, after
the table piece key object
has been placed.

First-person camera moves
and rotates towards the
table globe view object that
simulates the perspective for
the table globe object
interaction.

First-person camera moves
and rotates towards the
table globe view object that
simulates the perspective for
the table globe object
interaction.

7 Table globe pivot
object rotates to the
first-person
camera’s rotation
inversed in the ‘Y’
axis, upon the first-
person camera
entering the table
globe object view.

Touch the table globe rigid
object when the first-
person camera aligns the
table globe object in the
centre of the FOV and
when the table globe rigid
object is not centred, after
the table piece key object
has been placed.

Table globe pivot object
rotates to the first-person
camera’s rotation inversed in
the ‘Y’ axis, until it aligns,
whilst the table globe rigid
object is animating.

Table globe pivot object
rotates to the first-person
camera’s rotation inversed in
the ‘Y’ axis, until it aligns,
whilst the table globe rigid
object is animating.

8 Table globe rigid
object is rotatable
upon the table globe
rigid object
transitioning from
the first puzzle
iteration animation
to the static
animation state, and
when being
interacted with via
touch and drag
gestures.

Touch and drag on the
devices screen when the
table globe rigid object is
animating the first puzzle
iteration sequence, and
when the table globe rigid
object enters the static
animation state.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

9 Table globe rigid
object is rotatable
upon the table globe
rigid object
transitioning from
the second puzzle
iteration animation
to the static
animation state.

Touch and drag on the
devices screen when the
table globe rigid object is
animating the second
puzzle iteration sequence,
and when the table globe
rigid object enters the
static animation state.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

10 Table globe rigid
object is rotatable
upon the table globe
rigid object
transitioning from
the third puzzle
iteration animation
to the static
animation state.

Touch and drag on the
devices screen when the
table globe rigid object is
animating the third puzzle
iteration sequence, and
when the table globe rigid
object enters the static
animation state.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

Table globe rigid object
rotates via touch and drag
interaction when the table
globe rigid object is within
the static animation state,
otherwise the table globe
rigid object remains
stationary.

11 Table globe rigid
object animates first
table puzzle
iteration upon being
interacted with via
touch and being
within the static
animation state.

Touch the table globe rigid
object when within the
table globe view object’s
perspective, whilst when
the table globe rigid object
is rotating and stationary.

Table globe rigid object
animates first table puzzle
iteration, when the table
globe rigid object is
stationary and is interacted
with via touch.

Table globe rigid object
animates first table puzzle
iteration, when the table
globe rigid object is
stationary and is interacted
with via touch.

12 Table globe rigid
object animates
second table puzzle
iteration upon being
interacted with via
touch and being
within the static
animation state.

Touch the table globe rigid
object when within the
table globe view object’s
perspective, whilst when
the table globe rigid object
is rotating and stationary.

Table globe rigid object
animates second table puzzle
iteration, when the table
globe rigid object is
stationary and is interacted
with via touch.

Table globe rigid object
animates second table
puzzle iteration, when the
table globe rigid object is
stationary and is interacted
with via touch.

13 Table globe rigid
object animates
third table puzzle
iteration upon being
interacted with via
touch and being
within the static
animation state.

Touch the table globe rigid
object when within the
table globe view object’s
perspective, whilst when
the table globe rigid object
is rotating and stationary.

Table globe rigid object
animates third table puzzle
iteration, when the table
globe rigid object is
stationary and is interacted
with via touch.

Table globe rigid object
animates third table puzzle
iteration, when the table
globe rigid object is
stationary and is interacted
with via touch.

14 Table globe rigid
objects rotation is
reset to its static
animation state,
upon the incorrect
sequence of country
markers being
selected.

Touch the globe country
marker rigid objects when
the table piece globe rigid
object is rotatable.

Table globe rigid objects
rotation is reset towards a
neutral degree. Table globe
transitions to the static
animation state, where the
globe is no longer rotatable.

Table globe rigid objects
rotation is reset towards a
neutral degree. Table globe
transitions to the static
animation state, where the
globe is no longer rotatable.

15 Table puzzle
progress is reset
parallel to the table
globe rigid objects
rotation being reset,
the first table puzzle
iteration animation
is invoked upon the

Touch the globe country
marker rigid objects when
the table piece globe rigid
object is rotatable.

Touching the table globe
rigid object is required to
start the first table puzzle
iteration, where the first
table puzzle iteration
animation is invoked. Upon
touching a country marker
incorrectly when the table

Touching the table globe
rigid object is required to
start the first table puzzle
iteration, where the first
table puzzle iteration
animation is invoked. Upon
touching a country marker
incorrectly when the table

table globe rigid
object transitioning
to the static
animation state and
being touched upon.

globe rigid object is
rotatable, the table globe
rigid objects rotation resets.

globe rigid object is
rotatable, the table globe
rigid objects rotation resets.

16 Table globe country
marker rigid objects
animate and emit
sounds when
interacted with via
touch, when the
table piece globe
rigid object is
rotatable.

Touch the globe country
marker rigid objects when
the table piece globe rigid
object is rotatable and not
rotatable.

Table globe country marker
rigid objects animate and
emit sounds when the table
piece globe rigid object is not
rotating and are interacted
with via touch.

Table globe country marker
rigid objects animate and
emit sounds when the table
piece globe rigid object is not
rotating and are interacted
with via touch.

17 Table globe country
marker rigid objects
cannot be selected
multiple times for
the current attempt
of the puzzle
iteration.

Touch the globe country
marker rigid objects
multiple times when the
table globe rigid object is
rotatable.

Table globe country marker
rigid objects remain within
the same animation state,
maintain the same material
properties, and do not emit
sounds. The table globe rigid
object does not reset to the
initial iteration of the table
puzzle.

Table globe country marker
rigid objects remain within
the same animation state,
maintain the same material
properties, and do not emit
sounds. The table globe rigid
object does not reset to the
initial iteration of the table
puzzle.

18 Table globe rigid
object transitions to
the complete
animation state and
emits audio, table
piece light plane
objects inactive
animation states are
invoked, as well, the
table puzzle
complete sound is
played.

Touch the table globe
country marker rigid
objects in the correct
sequence when the table
globe rigid object is
rotatable, reach the third
table puzzle iteration.

Table globe rigid object
transitions to the complete
animation state, upon the
last correct country marker
in the third table puzzle
iteration being touched.
Table globe rigid object
emits sound signalling the
completion of the table
puzzle.

Table globe rigid object
transitions to the complete
animation state, upon the
last correct country marker
in the third table puzzle
iteration being touched.
Table globe rigid object
emits sound signalling the
completion of the table
puzzle.

19 First-person camera
exits table globe
object view, upon
the table puzzle
being complete.

Touch the table globe
country marker rigid
objects in the correct
sequence when the table
globe rigid object is
rotatable, reach the third
table puzzle iteration.

First-person camera exits the
table globe object view,
upon the final globe country
marker rigid object being
touched and table globe rigid
object finishes animating the
complete state.

First-person camera exits the
table globe object view,
upon the final globe country
marker rigid object being
touched and table globe rigid
object finishes animating the
complete state.

20 First-person camera
does not enter table
globe or table piece
object views, upon
the table globe rigid
object being
interacted with via
touch and are being
faced towards when
the table puzzle is
complete.

Touch the table globe and
table piece rigid objects
when the first-person
camera aligns the table
globe or table piece rigid
objects in the centre of the
FOV and when the table
globe or table piece rigid
objects are not centred,
upon completing the table
puzzle.

First-person camera remains
at the position and rotation
of the player object. First-
person camera movement
does not resemble attempts
to enter the table globe or
table piece view object
perspectives.

First-person camera remains
at the position and rotation
of the player object. First-
person camera movement
does not resemble attempts
to enter the table globe or
table piece view object
perspectives.

Table 13: Black-box test cases, object interaction within puzzle room two, music box puzzle

Case Summary Process Expected result(s) Actual result(s) Passed?
1 First-person camera

enters the music
box picture rigid
object view, upon
the table puzzle
complete sound
finish playing and
being faced
towards.

Player object traverses
towards music box
picture rigid object until
relatively close together
whilst facing the music
box picture rigid object,
when the table puzzle
complete sound is playing
and finishes playing also.

First-person camera moves
and rotates towards the
music box picture view
object that simulates the
perspective for the table
piece object interaction,
upon the table puzzle
complete sound finish
playing and whilst the first-
person camera is facing the
music box picture object.

First-person camera moves
and rotates towards the
music box picture view
object that simulates the
perspective for the table
piece object interaction,
upon the table puzzle
complete sound finish
playing and whilst the first-
person camera is facing the
music box picture object.

Otherwise the first-person
camera remains at the
position and rotation of the
player object.

Otherwise the first-person
camera remains at the
position and rotation of the
player object.

2 Music box picture
rigid object
animates upon the
first-person camera
entering the music
box picture object
view.

Player object traverses
towards music box
picture rigid object until
relatively close together
whilst facing the music
box picture rigid object,
when the table puzzle
complete sound has
finished playing.

Music box picture object
transitions to the active
animation state, where the
music box picture object
animates a narrative scene
and emits audio.

Music box picture object
transitions to the active
animation state, where the
music box picture object
animates a narrative scene
and emits audio.

3 Music box picture
light object
animates upon the
first-person camera
entering the music
box picture object
view.

Player object traverses
towards music box
picture rigid object until
relatively close together
whilst facing the music
box picture rigid object,
when the table puzzle
complete sound has
finished playing.

Music box picture light
object transitions to the
active animation state,
where the music box
picture light object
animates parallel to the
music box picture object.

Music box picture light
object transitions to the
active animation state,
where the music box
picture light object
animates parallel to the
music box picture object.

4 First-person camera
exits the music box
picture rigid object
view, upon the
music box picture
rigid object
transitioning to the
static animation
state.

Player object traverses
towards music box
picture rigid object until
relatively close together
whilst facing the music
box picture rigid object,
when the table puzzle
complete sound has
finished playing.

First-person camera exits
the music box picture
object view, upon the music
box picture object
transitioning to the static
animation state.

First-person camera exits
the music box picture
object view, upon the music
box picture object
transitioning to the static
animation state.

5 Music box picture
rigid object
animates towards
the grounding plane
upon touch
interaction.

Player object traverses
towards music box
picture rigid object until
relatively close together,
music box picture object
is touched.

Music box picture object
transitions to the active
animation state, where the
music box picture object
animates towards the
grounding plane upon
touching the music box
picture object.

Music box picture object
transitions to the active
animation state, where the
music box picture object
animates towards the
grounding plane upon
touching the music box
picture object.

6 Carousel music box
rigid object
animates upon the
music box picture
rigid object
transitioning to the
static animation
state.

Player object traverses
towards carousel music
box rigid object until the
carousel music box rigid
object is within the active
camera’s frustum.

Carousel music box object
transitions to the active
animation state, where the
carousel music box object
shakes and emits audio to
attract player attention.

Carousel music box object
transitions to the active
animation state, where the
carousel music box object
shakes and emits audio to
attract player attention.

7 Music box picture
light object
animates upon the
music box picture
rigid object
animating towards
the grounding
plane.

Player object traverses
towards music box
picture rigid object until
relatively close together,
music box picture object
is touched.

Music box picture light
object transitions to the
active animation state,
where the music box
picture light object
animates parallel to the
music box picture object.

Music box picture light
object transitions to the
active animation state,
where the music box
picture light object
animates parallel to the
music box picture object.

8 Music box object
can be obtained
when being
interacted with via
touch, upon the
music box picture
rigid object
transitioning to the
static animation
state, the music box
object animates as
disappearing and
emits sound.

Player object traverses
towards music box object
until relatively close
together and touches the
music box object.

Music box objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

Music box objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

9 Music box wind up
key object can be

Player object traverses
towards music box wind

Music box wind up key
objects scale reduces to

Music box wind up key
objects scale reduces to

obtained when
being interacted
with via touch,
upon the music box
picture rigid object
transitioning to the
static animation
state, the music box
wind up key object
.animates as
disappearing and
emits sound.

up key object until
relatively close together
and touches the music
box wind up object.

being invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

being invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

10 Music box latch key
object can be
obtained when
being interacted
with via touch,
upon the music box
picture rigid object
transitioning to the
static animation
state, the music box
latch key object
animates as
disappearing and
emits sound.

Player object traverses
towards music box latch
key object until relatively
close together and
touches the music box
latch key object.

Music box latch key objects
scale reduces to being
invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

Music box latch key objects
scale reduces to being
invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

11 First-person camera
enters the carousel
music box button
rigid object view,
upon the music box
picture rigid object
transitioning to the
static animation
state and the
carousel music box
rigid object being
interacted with, via
touch.

Player object traverses
towards carousel music
box rigid objects until
relatively close together
and touches the carousel
music box rigid objects.

First-person camera moves
and rotates towards the
carousel music box button
view object that simulates
the perspective for the
carousel music box button
object interaction, upon
touching the carousel music
box objects and the music
box picture object
transitioning to the static
animation state. Otherwise
the first-person camera
remains at the position and
rotation of the player
object.

First-person camera moves
and rotates towards the
carousel music box button
view object that simulates
the perspective for the
carousel music box button
object interaction, upon
touching the carousel music
box objects and the music
box picture object
transitioning to the static
animation state. Otherwise
the first-person camera
remains at the position and
rotation of the player
object.

12 First-person camera
enters the carousel
music box cylinder
rigid object view,
upon the carousel
music box button
rigid object being
interacted with, via
touch.

Touch the carousel music
box button rigid object
when within the carousel
music box button view
object’s perspective.

First-person camera moves
and rotates towards the
carousel music box cylinder
view object that simulates
the perspective for the
carousel music box cylinder
object, upon touching the
carousel music box button
object. Otherwise the first-
person camera remains at
the position and rotation of
the player object.

First-person camera moves
and rotates towards the
carousel music box cylinder
view object that simulates
the perspective for the
carousel music box cylinder
object, upon touching the
carousel music box button
object. Otherwise the first-
person camera remains at
the position and rotation of
the player object.

13 Carousel music box
rigid object
transitions to the
active animation
state where its
materials properties
are updated and
emits sound, upon
the carousel music
box button rigid
object being
interacted with, via
touch.

Touch the carousel music
box button rigid object
when within the carousel
music box button view
object’s perspective.

Carousel music box object
transitions to the active
animation state where its
material properties update
and emits sound, upon the
carousel music box button
object being touched.

Carousel music box object
transitions to the active
animation state where its
material properties update
and emits sound, upon the
carousel music box button
object being touched.

14 First-person camera
exits the carousel
music box cylinder
rigid object view,

Touch the carousel music
box button rigid object
when within the carousel

First-person camera exits
the carousel music box
object view, upon the
carousel music box object

First-person camera exits
the carousel music box
object view, upon the
carousel music box object

Inconsistent
working
order (not
explainable)

upon the carousel
music box rigid
object transitioning
to the static
animation state.

music box button view
object’s perspective.

transitioning to the static
animation state.

transitioning to the static
animation state.

15 Music box disc
object can be
obtained when
being interacted
with via touch,
upon the carousel
music box rigid
object transitioning
to the static
animation state, the
music box disc
object animates as
disappearing and
emits sound.

Player object traverses
towards music box disc
object until relatively
close together and
touches the music box
disc object.

Music box disc objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

Music box disc objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

16 First-person camera
does not enter
carousel music box
object view, upon
the carousel music
box button rigid
object being
interacted with via
touch when the
carousel music box
rigid object
interaction is
complete.

Touch the carousel music
box rigid object upon
completing the carousel
music box interaction.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the carousel music box view
objects perspective.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the carousel music box view
objects perspective.

17 Music box stand
hanging light object
animates and emits
light flickering
sounds upon the
music box item
objects being
obtained and when
the music box stand
rigid object is being
faced towards.

Player object traverses
towards music box stand
rigid object until relatively
close together and facing
the music box stand rigid
object.

Music box stand hanging
light object animates and
emits light flickering
sounds, when the player is
facing the music box stand
rigid object within close
range, and the music box
item objects have been
obtained.

Music box stand hanging
light object animates and
emits light flickering
sounds, when the player is
facing the music box stand
rigid object within close
range, and the music box
item objects have been
obtained.

18 First-person camera
enters the music
box stand object
view, upon the
music box stand
rigid object being
interacted with via
touch and being
faced towards.

Player object traverses
towards music box stand
rigid object until relatively
close together whilst
facing the music box
stand rigid object and
touching the music box
stand object.

First-person camera moves
and rotates towards the
music box stand view object
that simulates the
perspective for the music
box stand object, upon
touching it. Otherwise the
first-person camera
remains at the position and
rotation of the player
object.

First-person camera moves
and rotates towards the
music box stand view
object that simulates the
perspective for the music
box stand object, upon
touching it. Otherwise the
first-person camera
remains at the position and
rotation of the player
object.

19 Music box object
can be placed upon
the first-person
camera entering the
music box stand
object view, where
the music box stand
objects active
animation state is
invoked.

Touch the music box
stand holder object when
within the music box
stand view objects
perspective.

Music box object is placed
and appears in the scene
within the music box stand
holder object, upon the
music box holder object
being touched. Music box
stand objects active
animation states is invoked.

Music box object is placed
and appears in the scene
within the music box stand
holder object, upon the
music box holder object
being touched. Music box
stand objects active
animation states is invoked.

20 First-person camera
exits music box
stand object view,
upon the music box
object being placed
into the music box
stand holder object.

Touch the music box
stand holder object when
within the music box
stand view objects
perspective.

First-person camera exits
the music box stand object
view upon the music box
object being placed into the
music box holder object.

First-person camera exits
the music box stand object
view upon the music box
object being placed into the
music box holder object.

21 First-person camera
enters music box
rigid object view,
upon the music box
rigid object being
interacted with via
touch, after the
music box object
being placed.

Touch the music box rigid
object after the music box
object has been placed
and when the music box
object is being placed.

First-person camera moves
and rotates towards the
music box view object that
simulates the perspective
for the music box object
interaction when the music
box object has been placed.

First-person camera moves
and rotates towards the
music box view object that
simulates the perspective
for the music box object
interaction when the music
box object has been placed.

22 First-person camera
can be rotated
around music box
pivot object view,
upon the first-
person camera
entering the music
box object view,
and when being
interacted with via
touch and drag
gesture
interactions.

Touch and drag on the
devices screen when the
first-person camera
enters the music box view
objects perspective and
when the first-person
camera is entering the
music box view objects
perspective.

First-person camera rotates
via touch and drag
interaction when the first-
person camera is within the
music box view objects
perspective, otherwise the
first-person camera
remains stationary.

First-person camera rotates
via touch and drag
interaction when the first-
person camera is within the
music box view objects
perspective, otherwise the
first-person camera
remains stationary.

23 First-person camera
enters music box
latch key collider
object view, upon
the music box latch
key collider view
object being
interacted with via
touch, when the
music box latch
keyhole object is
visible, and the
music box puzzle
state is neutral.

Touch the music box latch
key collider view object
after the music box view
objects perspective has
been entered and when
the music box view
objects perspective is
being entered.

First-person camera moves
and rotates towards the
music box latch key collider
view object that simulates
the perspective for the
music box latch key object
interaction.

First-person camera moves
and rotates towards the
music box latch key collider
view object that simulates
the perspective for the
music box latch key object
interaction.

24 First-person camera
enters initial music
box wind up key
collider object view,
upon the music box
wind up key collider
view object being
interacted with via
touch, when the
music box wind up
keyhole object is
visible, and the
music box puzzle
state is neutral.

Touch the music box wind
up key collider view
object.

First-person camera moves
and rotates towards the
music box wind up key
collider view object that
simulates the perspective
for the music box latch key
object interaction.

First-person camera moves
and rotates towards the
music box wind up key
collider view object that
simulates the perspective
for the music box latch key
object interaction.

25 First-person camera
enters music box lid
collider object view,
upon the music box
lid collider view
object being
interacted with via
touch, when the
music box lid object
is visible, and once
the music box latch
key object
interaction is
complete.

Touch the music box lid
collider view object
before and after the
music box latch key
object interactions are
complete.

First-person camera moves
and rotates towards the
music box lid collider view
object that simulates the
perspective for the music
box lid object interaction
when the music box latch
key object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

First-person camera moves
and rotates towards the
music box lid collider view
object that simulates the
perspective for the music
box lid object interaction
when the music box latch
key object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

26 First-person camera
enters music box
disc spindle collider
object view, upon
the music box disc
spindle collider view
object being

Touch the music box disc
spindle collider view
object before and after
the music box lid object
interaction is complete.

First-person camera moves
and rotates towards the
music box disc spindle
collider view object that
simulates the perspective
for the music box disc
spindle object interaction

First-person camera moves
and rotates towards the
music box disc spindle
collider view object that
simulates the perspective
for the music box disc
spindle object interaction

interacted with via
touch, when the
music box spindle
object is visible, and
once the music box
lid object
interaction is
complete.

when the music box lid
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

when the music box lid
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

27 First-person camera
enters music box
disc needle collider
object view, upon
the music box disc
needle collider view
object being
interacted with via
touch, when the
music box needle
object is visible, and
once the music box
disc object
interaction is
complete.

Touch the music box disc
needle collider view
object before and after
the music box disc object
interaction is complete.

First-person camera moves
and rotates towards the
music box disc needle
collider view object that
simulates the perspective
for the music box disc
needle object interaction
when the music box disc
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

First-person camera moves
and rotates towards the
music box disc needle
collider view object that
simulates the perspective
for the music box disc
needle object interaction
when the music box disc
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

28 First-person camera
enters music box
overview collider
object view, upon
the music box
overview collider
view object being
interacted with via
touch, when the
music box wind up
key object is visible,
and once the music
box disc needle
object interaction is
complete.

Touch the music box
overview collider view
object before and after
the music box disc needle
object interaction is
complete.

First-person camera moves
and rotates towards the
music box overview collider
view object that simulates
the overviewing
perspective for the music
box object interaction when
the music box disc needle
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

First-person camera moves
and rotates towards the
music box overview collider
view object that simulates
the overviewing
perspective for the music
box object interaction when
the music box disc needle
object interaction is
complete. Otherwise the
first-person camera
remains at the position and
rotation of the music box
view object.

29 First-person camera
exits current music
box collider object
view, upon a swipe
down gesture being
performed, when
the first-person
camera is within a
music box collider
object view.

Swipe down on the
devices screen when first-
person camera is within a
music box collider view
objects perspective.

First-person camera moves
and rotates towards the
music box object view that
simulates the perspective
for the music box object
interaction, when a swipe
down gesture interaction is
performed within a music
box collider object view
perspective.

First-person camera moves
and rotates towards the
music box object view that
simulates the perspective
for the music box object
interaction, when a swipe
down gesture interaction is
performed within a music
box collider object view
perspective.

30 Music box wind up
key object can be
rotated around
music box wind up
key object axes,
upon first-person
camera entering the
music box wind up
collider object view,
and when the active
interaction is the
music box wind up
key objects primary
and secondary
interactions.

Pinch rotate right or left
on the devices screen
when first-person camera
is within the music box
wind up key collider view
and music box overview
collider view object
perspectives.

Music box wind up key
object rotates clockwise
upon a pinch rotate right
gesture interaction being
performed, whilst the music
box wind up key object
rotates anti-clockwise upon
a pinch rotate left gesture
interaction being
performed; when the first-
person camera is within the
music box wind up key
collider view objects
perspective.

Music box wind up key
object rotates clockwise
upon a pinch rotate right
gesture interaction being
performed, whilst the
music box wind up key
object rotates anti-
clockwise upon a pinch
rotate left gesture
interaction being
performed; when the first-
person camera is within the
music box wind up key
collider view objects
perspective.

31 Music box wind up
key objects position
can be translated to
the music box wind
up keyhole objects
position, upon the
music box wind up
key objects rotation

Swipe left on the devices
screen when first-person
camera is within the
music box wind up key
collider view objects
perspective, and when
the music box wind up
key object has and has

Music box wind up key
objects position is
translated to the position of
the music box wind up
keyhole object, upon a
swipe left gesture being
performed when the music
box wind up key objects

Music box wind up key
objects position is
translated to the position of
the music box wind up
keyhole object, upon a
swipe left gesture being
performed when the music
box wind up key objects

being aligned with
the music box wind
up keyhole object,
and when being
interacted with via
swipe left gesture.

not been rotationally
aligned with the music
box wind up keyhole
object.

rotation is aligned with the
music box wind up keyhole
object.

rotation is aligned with the
music box wind up keyhole
object.

32 Music box latch key
object can be
rotated around
music box latch key
object axes, upon
the first-person
camera entering the
music box latch key
collider object view,
and when being
interacted with via
touch and drag
gestures.

Touch and drag on the
devices screen when first-
person camera is within
the music box latch key
collider view objects
perspective.

Music box latch key object
rotates via touch and drag
interaction when the first-
person camera is within the
music box latch key collider
view objects perspective.

Music box latch key object
rotates via touch and drag
interaction when the first-
person camera is within the
music box latch key collider
view objects perspective.

33 Music box latch key
objects position can
be translated to the
music box latch
keyhole objects
position, upon the
music box latch key
objects rotation
being aligned with
the music box latch
keyhole object, and
when being
interacted with via
swipe right gesture.

Swipe right on the
devices screen when first-
person camera is within
the music box latch key
collider view objects
perspective, and when
the music box latch key
object has and has not
been rotationally aligned
with the music box latch
keyhole object.

Music box latch key objects
position is translated to the
position of the music box
latch keyhole object, upon a
swipe right gesture being
performed when the music
box latch key objects
rotation is aligned with the
music box latch keyhole
object.

Music box latch key objects
position is translated to the
position of the music box
latch keyhole object, upon
a swipe right gesture being
performed when the music
box latch key objects
rotation is aligned with the
music box latch keyhole
object.

34 Music box lid object
can be rotated
around music box
lid pivot object
axes, upon the first-
person camera
entering the music
box lid collider
object view, and
when being
interacted with via
touch and drag
gestures.

Touch and drag on the
devices screen when first-
person camera is within
the music box lid collider
view objects perspective,
and when the music box
lid object has and has not
been rotationally aligned
with the music box lid
hinge object.

Music box lid object rotates
via touch and drag
interaction when the first-
person camera is within the
music box lid collider view
objects perspective.

Music box lid object rotates
via touch and drag
interaction when the first-
person camera is within the
music box lid collider view
objects perspective.

35 Music box disc
objects position can
be translated to the
music box disc
spindle objects
position, upon the
first-person camera
entering the music
box disc spindle
collider object view,
and when being
interacted with via
swipe up or held up
gestures.

Swipe up or hold up on
the devices screen when
first-person camera is
within the music box disc
spindle collider view
objects perspective.

Music box disc objects
position is translated to the
position of the music box
disc spindle object, upon a
swipe up or held up gesture
being performed.

Music box disc objects
position is translated to the
position of the music box
disc spindle object, upon a
swipe up or held up gesture
being performed.

36 Music box disc
needle object can
be rotated around
music box disc
needle pivot object
axes, upon the first-
person camera
entering the music
box disc needle
collider object view,
and when being

Touch and drag on the
devices screen when first-
person camera is within
the music box disc spindle
collider view objects
perspective.

Music box disc needle
object rotates via touch and
drag interaction when the
first-person camera is
within the music box disc
needle collider view objects
perspective.

Music box disc needle
object rotates via touch and
drag interaction when the
first-person camera is
within the music box disc
needle collider view objects
perspective.

interacted with via
touch and drag
gestures.

37 First-person camera
exits music box
wind up key collider
object view, upon
the primary music
box wind up key
object interaction
being complete.

Swipe left on the devices
screen when first-person
camera is within the
music box wind up key
collider view objects
perspective, and when
the music box wind up
key object has been
rotationally aligned with
the music box wind up
keyhole object.

First-person camera exits
the music box wind up key
collider object view upon
the music box wind up key
object being inserted into
the music box wind up
keyhole object.

First-person camera exits
the music box wind up key
collider object view upon
the music box wind up key
object being inserted into
the music box wind up
keyhole object.

38 First-person camera
exits music box
latch key collider
object view, upon
the music box latch
key object
interaction being
complete.

Swipe right on the
devices screen when first-
person camera is within
the music box latch key
collider view objects
perspective, and when
the music box latch key
object has and has not
been rotationally aligned
with the music box latch
keyhole object.

First-person camera exits
the music box latch key
collider object view upon
the music box latch key
object being inserted into
the music box latch keyhole
object.

First-person camera exits
the music box latch key
collider object view upon
the music box latch key
object being inserted into
the music box latch keyhole
object.

39 First-person camera
exits music box lid
collider object view,
upon the music box
lid object
interaction being
complete.

Touch and drag on the
devices screen when first-
person camera is within
the music box lid collider
view objects perspective,
and when the music box
lid object has and has not
been rotationally aligned
with the music box lid
hinge object.

First-person camera exits
the music box lid collider
object view upon the music
box lid object being aligned
with the music box lid hinge
object.

First-person camera exits
the music box lid collider
object view upon the music
box lid object being aligned
with the music box lid hinge
object.

Inconsistent
working
order (not
explainable)

40 First-person camera
exits music box disc
spindle collider
object view, upon
the music box disc
object interaction
being complete.

Swipe up or hold up on
the devices screen when
first-person camera is
within the music box disc
spindle collider view
objects perspective.

First-person camera exits
the music box disc spindle
collider object view upon
the music box disc object
being placed onto the
music box disc spindle
object.

First-person camera exits
the music box disc spindle
collider object view upon
the music box disc object
being placed onto the
music box disc spindle
object.

41 First-person camera
exits music box disc
needle collider
object view, upon
the music box disc
needle interaction
being complete.

Touch and drag on the
devices screen when first-
person camera is within
the music box disc spindle
collider view objects
perspective.

First-person camera exits
the music box disc needle
collider object view upon
the music box disc needle
object being aligned with
the music box disc spindle
object.

First-person camera exits
the music box disc needle
collider object view upon
the music box disc needle
object being aligned with
the music box disc spindle
object.

42 First-person camera
exits music box
object view, upon
the music box stand
and music box
object interactions
being complete.

Pinch rotate right on the
devices screen when first-
person camera is within
the music box overview
collider view perspective.

First-person camera exits
the music box object view
upon the music box wind
up key object finish
rotating, and when the
music box mirror object
transitions to the active
animation state.

First-person camera exits
the music box object view
upon the music box wind
up key object finish
rotating, and when the
music box mirror object
transitions to the active
animation state.

43 Music box
wardrobe rigid
object transitions to
the active
animation state and
emits audio, upon
music box stand
and music box
object interactions
being complete,
and when music
box wardrobe
doorknob rigid
objects being

Touch the music box
wardrobe doorknob rigid
objects, upon completing
and not completing the
music box stand and
music box object
interactions.

Music box wardrobe rigid
object transitions to the
active animation state,
upon the music box
wardrobe doorknob objects
being touched, when the
music box stand, and music
box object interactions are
complete. Music box
wardrobe object emits
wardrobe doors opening
sound.

Music box wardrobe rigid
object transitions to the
active animation state,
upon the music box
wardrobe doorknob objects
being touched, when the
music box stand, and music
box object interactions are
complete. Music box
wardrobe object emits
wardrobe doors opening
sound.

interacted with, via
touch gesture.

44 First-person camera
does not enter
music box stand or
music box object
views, upon the
music box stand or
music box rigid
objects being
interacted with via
touch, when the
music box stand,
and music box
object interactions
are complete.

Touch the music box
stand and music box rigid
objects, upon the music
box stand and music box
object interactions being
complete.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the music box stand or
music box view object
perspectives.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the music box stand or
music box view object
perspectives.

Table 14: Black-box test cases, object interaction within puzzle room two, piano puzzle

Case Summary Process Expected result(s) Actual result(s) Passed?
1 Bookshelf light and

light switch objects
animate and emit
light switch sound,
upon being
interacted with by
touch gesture when
the music box
puzzle is complete.

Player object traverses
towards bookshelf light
switch object until
relatively close together
and touches the
bookshelf light switch
object.

Bookshelf light and light
switch objects animate and
emit light switch sound,
when the music box puzzle
has been complete and
when the bookshelf light
switch object has been
touched.

Bookshelf light and light
switch objects animate and
emit light switch sound,
when the music box puzzle
has been complete and
when the bookshelf light
switch object has been
touched.

2 First-person camera
enters bookshelf
book object view,
upon the bookshelf
book object being
interacted with via
touch and being
faced towards,
when the bookshelf
light has
transitioned to the
active animation
state.

Touch the bookshelf book
object when the first-
person camera aligns the
bookshelf book object in
the centre of the FOV and
when the bookshelf book
object is not centred,
upon the bookshelf light
transitioning to the active
animation state.

First-person camera moves
and rotates towards the
bookshelf book view object
that simulates the
perspective for the
bookshelf book object
interaction when the
bookshelf light objects
animation state is active.

First-person camera moves
and rotates towards the
bookshelf book view object
that simulates the
perspective for the
bookshelf book object
interaction when the
bookshelf light objects
animation state is active.

3 Bookshelf book
objects position can
be translated to the
position of the
bookshelf edge,
upon the first-
person camera
entering the
bookshelf book
view, and when
being interacted
with via swipe hold
down gestures.

Swipe hold down on the
devices screen when first-
person camera is within
the bookshelf book view
objects perspective.

Bookshelf book objects
position is translated to the
position of the bookshelf
shelf edge, upon a swipe
held down gesture being
performed.

Bookshelf book objects
position is translated to the
position of the bookshelf
shelf edge, upon a swipe
held down gesture being
performed.

4 Bookshelf book
object can be
obtained when
being interacted
with via touch,
upon the bookshelf
book object being
positioned at the
bookshelf shelf
edge, the bookshelf
book object
animates as
disappearing and
emits sound.

Swipe hold down on the
devices screen when first-
person camera is within
the bookshelf book view
objects perspective,
touch the bookshelf book
object when it is
positioned at the
bookshelf shelf edge.

Bookshelf book objects
scale reduces to being
invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

Bookshelf book objects
scale reduces to being
invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

5 First-person camera
exits bookshelf
book object view,
upon the bookshelf
book object being
obtained.

Swipe hold down on the
devices screen when first-
person camera is within
the bookshelf book view
objects perspective,
touch the bookshelf book
object when it is
positioned at the
bookshelf shelf edge.

First-person camera exits
the bookshelf book object
view upon the bookshelf
book object being obtained.

First-person camera exits
the bookshelf book object
view upon the bookshelf
book object being obtained.

Inconsistent
working
order (not
explainable)

6 First-person camera
does not enter
bookshelf book
object view, upon
the bookshelf book
object being
obtained.

Touch where the
bookshelf book object
was positioned, when the
first-person camera is
aligned with where the
bookshelf book object
was positioned in the
centre of the FOV.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the bookshelf book view
objects perspective.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the bookshelf book view
objects perspective.

7 Book stand hanging
light object
animates and emits
light flickering
sounds upon the
bookshelf book
object being
obtained and when
the book stand rigid
object is being
faced towards.

Player object traverses
towards book stand rigid
object until relatively
close together and facing
the book stand rigid
object.

Book stand hanging light
object animates and emits
light flickering sounds,
when the player is facing
the book stand rigid object
within close range, and the
bookshelf book object has
been obtained.

Book stand hanging light
object animates and emits
light flickering sounds,
when the player is facing
the book stand rigid object
within close range, and the
bookshelf book object has
been obtained.

8 First-person camera
enters bookstand
object view, upon
the bookstand
object being
interacted with via
touch and being
faced towards,
when the
bookstand light
object has
transitioned to the
active animation
state.

Touch the bookstand
object when the first-
person camera aligns the
bookstand object in the
centre of the FOV and
when the bookstand
object is not centred,
upon the bookstand light
object transitioning to the
active animation state.

First-person camera moves
and rotates towards the
bookstand view object that
simulates the perspective
for the bookstand object
interaction when the
bookstand light objects
animation state is active.

First-person camera moves
and rotates towards the
bookstand view object that
simulates the perspective
for the bookstand object
interaction when the
bookstand light objects
animation state is active.

9 Bookshelf book
object can be
placed upon the
first-person camera
entering the
bookstand object
view, and when the
bookstand object is
being interacted
with, via touch.

Touch the bookstand
object when within the
bookstand view objects
perspective.

Bookshelf book object is
placed and appears in the
scene on top of the
bookstand object, upon the
bookstand object being
touched.

Bookshelf book object is
placed and appears in the
scene on top of the
bookstand object, upon the
bookstand object being
touched.

10 Bookshelf book
page objects
animate upon the
bookshelf book
object being placed,
and when bookshelf
book page objects
are being interacted
with, via swipe left
and right gestures.

Swipe left or right on the
devices screen when first-
person camera is within
the bookstand view
objects perspective.

Bookshelf book page
objects transition to the
active animation state upon
performing swipe left or
right gestures, when within
the bookstand view objects
perspective.

Bookshelf book page
objects transition to the
active animation state upon
performing swipe left or
right gestures, when within
the bookstand view objects
perspective.

11 Music sheet objects
position can be
translated to
hovering above the
bookshelf book
object, upon the
bookshelf book
page object

Swipe up on the devices
screen when first-person
camera is within the
bookstand view objects
perspective, and when
the bookshelf book page
object has transitioned to

Music sheet objects
position is translated to
hovering above the
bookshelf book object,
upon swipe up gestures
being performed.

Music sheet objects
position is translated to
hovering above the
bookshelf book object,
upon swipe up gestures
being performed.

transitioning to the
final active
animation state,
and when being
interacted with, via
swipe up gestures.

the final active animation
state.

12 Music sheet object
can be obtained
when being
interacted with via
touch, upon the
music sheet object
being positioned
above the bookshelf
book object, the
music sheet object
animates as
disappearing and
emits sound.

Swipe up on the devices
screen when first-person
camera is within the
bookstand view objects
perspective, and when
the bookshelf book page
object has transitioned to
the final active animation
state, touch the music
sheet object when it is
positioned above the
bookshelf book object.

Music sheet objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

Music sheet objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

13 First-person camera
exits bookstand
object view, upon
the music sheet
object being
obtained.

Swipe up on the devices
screen when first-person
camera is within the
bookstand view objects
perspective, and when
the bookshelf book page
object has transitioned to
the final active animation
state, touch the music
sheet object when it is
positioned above the
bookshelf book object.

First-person camera exits
the bookstand object view
upon the music sheet
object being obtained.

First-person camera exits
the bookstand object view
upon the music sheet
object being obtained.

14 First-person camera
does not enter
bookstand object
view, upon the
bookstand and
bookshelf book
objects being
interacted with via
touch, when the
bookstand and
bookshelf book
object interactions
are complete.

Touch the bookstand and
bookshelf book objects,
upon the bookstand and
bookshelf book object
interactions being
complete.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the bookstand or bookshelf
book object perspectives.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the bookstand or bookshelf
book object perspectives.

15 Piano strobe light
objects animates
and emit light
flashing sounds
upon the bookstand
and bookshelf book
object interactions
being complete.

Swipe up on the devices
screen when first-person
camera is within the
bookstand view objects
perspective, and when
the bookshelf book page
object has transitioned to
the final active animation
state, touch the music
sheet object when it is
positioned above the
bookshelf book object.

Piano strobe light objects
animates and emits light
flashing sounds, upon the
bookstand and bookshelf
book interactions being
complete.

Piano strobe light objects
animates and emits light
flashing sounds, upon the
bookstand and bookshelf
book interactions being
complete.

16 First-person camera
enters piano object
view, upon the
piano rigid object
being interacted
with via touch and
being faced
towards, when the
piano strobe light
objects have
transitioned to the
active animation
states.

Touch the piano rigid
object when the first-
person camera aligns the
piano rigid object in the
centre of the FOV and
when the piano rigid
object is not centred,
upon the piano strobe
light objects transitioning
to the active animation
states.

First-person camera moves
and rotates towards the
piano view object that
simulates the perspective
for the piano object
interactions when the piano
strobe light objects
animation states are active.

First-person camera moves
and rotates towards the
piano view object that
simulates the perspective
for the piano object
interactions when the
piano strobe light objects
animation states are active.

17 First-person camera
enters piano shelf

Touch the piano shelf
rigid object when the

First-person camera moves
and rotates towards the

First-person camera moves
and rotates towards the

object view, upon
the piano shelf rigid
object being
interacted with via
touch, when the
first-person camera
has entered the
piano object view.

first-person camera has
entered and is entering
the piano view objects
perspective.

piano shelf view object that
simulates the perspective
for the piano shelf object
interaction, when the first-
person camera has entered
the piano view objects
perspective.

piano shelf view object that
simulates the perspective
for the piano shelf object
interaction, when the first-
person camera has entered
the piano view objects
perspective.

18 Music sheet object
can be placed upon
the first-person
camera entering the
piano shelf view,
and when the piano
shelf view rigid
object is being
interacted with, via
touch.

Touch the piano shelf
rigid object when within
the piano shelf view
objects perspective.

Music sheet object is placed
and appears in the scene in
front of the piano shelf rigid
object, upon the piano shelf
rigid object being touched.

Music sheet object is placed
and appears in the scene in
front of the piano shelf rigid
object, upon the piano shelf
rigid object being touched.

19 First-person camera
exits piano shelf
object view, upon
the music sheet
object being placed.

Touch the piano shelf
rigid object when within
the piano shelf view
objects perspective.

First-person camera exits
the piano shelf object view
upon the music sheet
object being placed.

First-person camera exits
the piano shelf object view
upon the music sheet
object being placed.

20 First-person camera
enters piano key
object view, upon
the piano key rigid
object being
interacted with via
touch, and when
the music sheet
object has been
placed.

Touch the piano key rigid
object when the music
sheet object has and has
not been placed, within
and when transitioning to
and from the piano and
piano shelf view object
perspectives.

First-person camera moves
and rotates towards the
piano key view object that
simulates the perspective
for the piano key object
interaction, when the first-
person camera has entered
the piano view objects
perspective, and when the
music sheet object has
been placed.

First-person camera moves
and rotates towards the
piano key view object that
simulates the perspective
for the piano key object
interaction, when the first-
person camera has entered
the piano view objects
perspective, and when the
music sheet object has
been placed.

21 First-person camera
object view can be
alternated between
the piano shelf and
piano key object
views, upon
entering the piano
key object view
initially, and when
swipe up and down
gesture interactions
are performed.

Swipe up on the devices
screen when first-person
camera is within the
piano key view objects
perspective; swipe down
on the devices screen
when the first-person
camera is within the
piano shelf view objects
perspective, upon
entering the piano key
view objects perspective
initially.

First-person camera moves
and rotates towards the
piano key view object that
simulates the perspective
for the piano key object
interaction, upon a swipe
down gesture being
performed when the first-
person camera is within the
piano shelf view objects
perspective. Vice versa.

First-person camera moves
and rotates towards the
piano key view object that
simulates the perspective
for the piano key object
interaction, upon a swipe
down gesture being
performed when the first-
person camera is within the
piano shelf view objects
perspective. Vice versa.

22 Piano key rigid
objects can be
played upon the
first-person camera
entering the piano
key object view.
Piano key rigid
objects animate and
emit sound when
are being interacted
with, via touch.

Touch the piano key rigid
objects when within the
piano key view objects
perspective.

Piano key objects transition
to the active animation
states and emit sound,
upon the piano key rigid
objects being touched.
Piano key objects cannot be
interacted with and played
whilst within the active
animation state.

Piano key objects transition
to the active animation
states and emit sound,
upon the piano key rigid
objects being touched.
Piano key objects cannot be
interacted with and played
whilst within the active
animation state.

23 First-person camera
enters piano shelf
object view, upon
the piano key rigid
objects being
interacted with via
touch, in the wrong
sequence, and
when the piano key
rigid objects are not
interacted with for
a short period of
time, upon a piano

Touch the piano key rigid
objects continually and
singularly when within
the piano key view object
perspective.

First-person camera moves
and rotates towards the
piano shelf view object that
simulates the perspective
for the music sheet object,
when the piano key rigid
objects are not interacted
with for a short period of
time, and when the piano
key rigid objects are
interacted with
continuously in the wrong
sequence.

First-person camera moves
and rotates towards the
piano shelf view object that
simulates the perspective
for the music sheet object,
when the piano key rigid
objects are not interacted
with for a short period of
time, and when the piano
key rigid objects are
interacted with
continuously in the wrong
sequence.

key rigid object
being interacted
with prior.

24 First-person camera
exits piano object
view, upon the
piano puzzle
interaction being
complete.

Touch the piano key rigid
objects continually in the
correct sequence when
within the piano key view
object perspective.

First-person camera exits
the piano object view upon
the piano puzzle interaction
being complete.

First-person camera exits
the piano object view upon
the piano puzzle interaction
being complete.

25 First-person camera
does not enter
piano, piano shelf,
and piano key
object views, upon
the piano, piano
shelf and piano key
objects being
interacted with, via
touch, and when
the piano object
interactions are
complete.

Touch the piano, piano
shelf, and piano key
objects, upon the piano
object interactions being
complete.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the piano, piano shelf, and
piano key view object
perspectives.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the piano, piano shelf, and
piano key view object
perspectives.

Table 15: Black-box test cases, object interaction within puzzle room one, telephone puzzle

Case Summary Process Expected result(s) Actual result(s) Passed?
1 First-person camera

enters telephone
rigid object view,
upon the telephone
rigid object being
interacted with via
touch and being
faced towards.

Touch the telephone rigid
object when the first-
person camera aligns the
telephone rigid object in
the centre of the FOV and
when the telephone rigid
object is not centred.

First-person camera moves
and rotates towards the
telephone view object that
simulates the perspective
for the telephone object
interactions.

First-person camera moves
and rotates towards the
telephone view object that
simulates the perspective
for the telephone object
interactions.

2 Telephone earpiece
object animates and
emits sounds upon
the first-person
camera entering the
telephone rigid
object view, when a
swipe hold up
gesture is
performed, and
when the telephone
ringing sound is
being played.

Swipe hold up on the
devices screen when first-
person camera is within
the telephone view
objects perspective.

Telephone earpiece object
transitions to the active
animation states and emits
sound, upon a swipe held
up gesture being performed
when within the telephone
view objects perspective.
Telephone object ringing
sound stops playing.

Telephone earpiece object
transitions to the active
animation states and emits
sound, upon a swipe held
up gesture being performed
when within the telephone
view objects perspective.
Telephone object ringing
sound stops playing.

3 First-person camera
exits telephone
object view, upon
the telephone
earpiece object
transitioning to the
static animation
state. Telephone
earpiece object
emits sound.

Swipe hold up on the
devices screen when first-
person camera is within
the telephone view
objects perspective.

First-person camera exits
the telephone object view
upon the telephone
earpiece object
transitioning to the static
animation state, telephone
earpiece object emits
sound.

First-person camera exits
the telephone object view
upon the telephone
earpiece object
transitioning to the static
animation state, telephone
earpiece object emits
sound.

4 First-person camera
does not enter
telephone object
view, upon the
telephone earpiece
object being initially
interacted with, via
touch, and until the
clipboard note has
been obtained.

Touch the telephone
object, upon the initial
telephone earpiece
interaction being
complete.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the telephone view objects
perspective.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the telephone view objects
perspective.

5 Ornament stand
hanging light
objects animate and
emit light flickering
sounds upon the
telephone objects
initial interaction
being complete, and
when the ornament
stand rigid objects
are being faced
towards.

Player object traverses
towards ornament stand
rigid objects until
relatively close together
and facing the ornament
stand rigid objects.

Ornament stand hanging
light objects animate and
emit light flickering sounds,
when the player is facing
the ornament stand rigid
objects within close range,
and the initial telephone
object interaction has been
complete.

Ornament stand hanging
light objects animate and
emit light flickering sounds,
when the player is facing
the ornament stand rigid
objects within close range,
and the initial telephone
object interaction has been
complete.

6 First-person camera
enters face mask
rigid object view,
upon the ornament
stand light objects
transitioning to the
active animation
state, and when the
face mask rigid
object is being
faced towards, from
a similar angular
offset as the first-
person camera.

Touch the face mask rigid
object when the first-
person camera aligns the
face mask rigid object in
the centre of the FOV and
when the face mask rigid
object is not centred. As
well as when the first-
person camera does and
does not share a similar
angular offset to the face
mask rigid object.

First-person camera moves
and rotates towards the
face mask view object that
simulates the perspective
for the face mask object.
First-person camera does
not move and rotate
towards the face mask view
object when the audio
device objects audio
sequence is playing.

First-person camera moves
and rotates towards the
face mask view object that
simulates the perspective
for the face mask object.
First-person camera does
not move and rotate
towards the face mask view
object when the audio
device objects audio
sequence is playing.

7 First-person camera
exits face mask
object view, upon
the face mask
object interaction
being complete.

Touch the face mask rigid
object when the first-
person camera aligns the
face mask rigid object in
the centre of the FOV and
when the face mask rigid
object is not centred. As
well as when the first-
person camera does and
does not share a similar
angular offset to the face
mask rigid object.

First-person camera exits
the face mask object view
upon the face mask object
interaction being complete.

First-person camera exits
the face mask object view
upon the face mask object
interaction being complete.

Inconsistent
working
order (not
explainable)

8 Glass cabinet
window rigid object
animates and emits
sound upon the
ornament stand
light objects
transitioning to the
active animation
state, and when the
glass cabinet
window object is
being interacted
with, via touch.

Touch the glass cabinet
window rigid object, upon
the ornament stand light
objects transitioning to
the active animation
state.

Glass cabinet window
object transitions to the
active animation state and
emits sound, upon being
touched.

Glass cabinet window
object transitions to the
active animation state and
emits sound, upon being
touched.

9 Clipboard note
object can be
obtained when
being interacted
with via touch,
upon the ornament
stand light objects
transitioning to the
active animation
state, the music
sheet object
animates as
disappearing and
emits sound.

Player object traverses
towards clipboard note
object until relatively
close together and
touches the clipboard
note object.

Clipboard note objects scale
reduces to being invisible
upon being touched, where
the item obtained sound is
then played to signal its
possession.

Clipboard note objects
scale reduces to being
invisible upon being
touched, where the item
obtained sound is then
played to signal its
possession.

10 First-person camera
enters clipboard
rigid object view,
upon the clipboard
rigid object being
interacted with, via

Touch the clipboard rigid
object when the
clipboard note object has
been obtained and when
the clipboard note has
been placed.

First-person camera moves
and rotates towards the
clipboard view object that
simulates the perspective
for the clipboard note
object interaction. First-

First-person camera moves
and rotates towards the
clipboard view object that
simulates the perspective
for the clipboard note
object interaction. First-

touch, when the
clipboard note
object has been
obtained or placed.

person camera does not
move and rotate towards
the clipboard view object
when the audio device
objects audio sequence is
playing.

person camera does not
move and rotate towards
the clipboard view object
when the audio device
objects audio sequence is
playing.

11 Clipboard note
object can be
placed upon the
first-person camera
entering the
clipboard object
view, when the
clipboard note
object has not been
placed prior.

Touch the clipboard rigid
object when within the
clipboard view objects
perspective, when the
clipboard note object has
and has not been placed
prior.

Clipboard note object is
placed and appears on top
of the clipboard object,
upon the clipboard object
being touched, when the
clipboard note object has
not been placed prior.

Clipboard note object is
placed and appears on top
of the clipboard object,
upon the clipboard object
being touched, when the
clipboard note object has
not been placed prior.

12 First-person camera
exits clipboard
object view, upon
the clipboard note
object being placed
or after a short
period of time.

Touch the clipboard rigid
object when within the
clipboard view objects
perspective.

First-person camera exits
the clipboard object view,
upon the clipboard note
object being placed or after
a short period of time when
the clipboard note object
has been placed prior.

First-person camera exits
the clipboard object view,
upon the clipboard note
object being placed or after
a short period of time when
the clipboard note object
has been placed prior.

13 Audio device rigid
object can be
played upon the
ornament stand
light objects
transitioning to the
active animation
state, and when the
audio device is
being interacted
with, via touch.

Touch the audio device
rigid object when the
ornament stand light
objects enter the active
animation state.

Audio device object emits
Morse code sound
sequence, upon the audio
device object being
touched, and when the
ornament stand light
objects enter the active
animation state. Audio
device objects sound
sequence cannot be played
again, until current sound
sequence iteration has
finished playing.

Audio device object emits
Morse code sound
sequence, upon the audio
device object being
touched, and when the
ornament stand light
objects enter the active
animation state. Audio
device objects sound
sequence cannot be played
again, until current sound
sequence iteration has
finished playing.

14 First-person camera
enters Morse code
book rigid object
view, upon the
ornament stand
light objects
transitioning to the
active animation
state, and when the
Morse code book
rigid object is being
interacted with, via
touch.

Touch the Morse code
rigid object when the
ornament stand light
objects enter the active
animation state.

First-person camera moves
and rotates towards the
Morse code book view
object that simulates the
perspective for the Morse
code book page object.

First-person camera moves
and rotates towards the
Morse code book view
object that simulates the
perspective for the Morse
code book page object.

15 First-person camera
exits Morse code
book object view,
after a short period
of time.

Touch the Morse code
rigid object when the
ornament stand light
objects enter the active
animation state.

First-person camera exits
the Morse code object
view, after a short period of
time.

First-person camera exits
the Morse code object
view, after a short period of
time.

16 First-person camera
enters telephone
rigid object view,
upon the telephone
rigid object being
interacted with via
touch and being
faced towards, and
when the clipboard
note rigid object has
been placed.

Touch the telephone rigid
object when the first-
person camera aligns the
telephone rigid object in
the centre of the FOV and
when the telephone rigid
object is not centred.

First-person camera moves
and rotates towards the
telephone view object that
simulates the perspective
for the telephone object
interactions. First-person
camera does not move and
rotate towards the
clipboard view object when
the audio device objects
audio sequence is playing.

First-person camera moves
and rotates towards the
telephone view object that
simulates the perspective
for the telephone object
interactions. First-person
camera does not move and
rotate towards the
clipboard view object when
the audio device objects
audio sequence is playing.

17 Telephone button
rigid objects can be
pressed upon the
first-person camera
entering the
telephone rigid

Touch the telephone
button rigid objects when
within the telephone
view objects perspective.

Telephone button objects
transition to the active
animation states and emit
sound, upon the telephone
button rigid objects being
touched. Telephone button

Telephone button objects
transition to the active
animation states and emit
sound, upon the telephone
button rigid objects being
touched. Telephone button

object view.
Telephone button
rigid objects
animate and emit
sound when are
being interacted
with, via touch.

objects cannot be
interacted with and played
whilst within the active
animation state.

objects cannot be
interacted with and played
whilst within the active
animation state.

18 Telephone number
object displays the
telephone button
rigid object input,
upon the telephone
button rigid objects
being interacted
with, via touch.
Telephone number
object resets the
telephone button
rigid object input,
when the telephone
number object
exceeds the limit for
displaying input.

Touch the telephone
button rigid objects when
within the telephone
view objects perspective.

Telephone number object
displays the telephone
button rigid object input,
upon the telephone button
rigid objects being
interacted with, via touch.
Telephone number object
resets the telephone button
rigid object input, when the
telephone number object
exceeds the limit for
displaying input.

Telephone number object
displays the telephone
button rigid object input,
upon the telephone button
rigid objects being
interacted with, via touch.
Telephone number object
resets the telephone button
rigid object input, when the
telephone number object
exceeds the limit for
displaying input.

19 Telephone earpiece
object animates and
emits sounds upon
the first-person
camera entering the
telephone rigid
object view, when a
swipe hold up
gesture is
performed, and
when the telephone
number object is
displaying the limit
for telephone
button rigid object
input.

Swipe hold up on the
devices screen when first-
person camera is within
the telephone view
objects perspective.

Telephone earpiece object
transitions to the active
animation states and emits
sound, upon a swipe held
up gesture being performed
when within the telephone
view objects perspective.

Telephone earpiece object
transitions to the active
animation states and emits
sound, upon a swipe held
up gesture being performed
when within the telephone
view objects perspective.

20 First-person camera
exits telephone rigid
object view, upon a
swipe hold down
gesture being
performed, when
the first-person
camera is within the
telephone rigid
object view.

Swipe hold down on the
devices screen when first-
person camera is within a
telephone rigid view
objects perspective.

First-person camera exits
the face mask object view
upon a swipe hold down
gesture interaction being
performed when within the
telephone object view.

First-person camera exits
the face mask object view
upon a swipe hold down
gesture interaction being
performed when within the
telephone object view.

21 First-person camera
exits telephone rigid
object view, upon
the telephone rigid
object interaction
being complete.

Touch the telephone
button rigid objects when
within the telephone
view objects perspective,
press the telephone
button rigid objects in the
correct sequence, and
perform a swipe hold up
gesture upon the
telephone number object
input reaching the limit.

First-person camera exits
the telephone object view
upon the telephone object
interaction being complete.

First-person camera exits
the telephone object view
upon the telephone object
interaction being complete.

Inconsistent
working
order (not
explainable)

22 First-person camera
does not enter face
mask, clipboard,
Morse code book
and telephone
object views, upon
the face mask,
clipboard, Morse
code book and
telephone objects
being interacted

Touch the face mask,
clipboard, Morse code
book and telephone
objects, upon the
telephone object
interaction being
complete.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the face mask, clipboard,
Morse code book and
telephone view object
perspectives.

First-person camera
remains at the position and
rotation of the player
object. First-person camera
movement does not
resemble attempts to enter
the face mask, clipboard,
Morse code book and
telephone view object
perspectives.

with, via touch, and
when the telephone
object interaction is
complete.

Table 16: Black-box test cases, scene transitioning

Case Summary Process Expected result(s) Actual result(s) Passed?
1 First level scene is

transitioned to and
loaded, upon the
loading screen scene
start button and
disclaimer window
button objects being
interacted with, via
touch.

Touch the disclaimer
window button object,
upon the start button
object being touched and
disclaimer window button
object appearing.

First level scene is
transitioned to and loaded,
upon the loading screen
scene start button and
disclaimer window button
objects being touched.

First level scene is
transitioned to and loaded,
upon the loading screen
scene start button and
disclaimer window button
objects being touched.

2 First puzzle room
scene is transitioned
to and loaded, upon
the first level scene
being loaded, and
when the player
object collides with
the first puzzle room
door and level
trigger objects. As
well as when the
first puzzle room
interactions have
not been complete.

Player object traverses
towards level one door
object until relatively close
together and collides with
the level one door trigger
object, where the level
one door object transitions
to the active animation
state. Upon the level one
door object entering the
active animation state, the
player object traverses
towards the level one door
object again, until
relatively close together
and collides with the level
one trigger object.

First puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level one
trigger object, and when the
first puzzle room interactions
have not been complete.

First puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level one
trigger object, and when the
first puzzle room interactions
have not been complete.

3 Second puzzle room
scene is transitioned
to and loaded, upon
the first level scene
being loaded, and
when the player
object collides with
the second puzzle
room door and level
trigger objects. As
well as when the
second puzzle room
interactions have
not been complete,
whilst the first
puzzle room
interactions have
been complete.

Player object traverses
towards level two door
object until relatively close
together and collides with
the level two door trigger
object, where the level
two door object transitions
to the active animation
state. Upon the level two
door object entering the
active animation state, the
player object traverses
towards the level two door
object again, until
relatively close together
and collides with the level
two trigger object.

Second puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level two
trigger object, and when the
second puzzle room
interactions have not been
complete, but the first puzzle
room interactions have been
complete.

Second puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level two
trigger object, and when the
second puzzle room
interactions have not been
complete, but the first puzzle
room interactions have been
complete.

4 Third puzzle room
scene is transitioned
to and loaded, upon
the first level scene
being loaded, and
when the player
object collides with
the third puzzle
room door and level
trigger objects. As
well as when the
third puzzle room
interactions have
not been complete,
whilst the first and
second puzzle room

Player object traverses
towards level three door
object until relatively close
together and collides with
the level three door trigger
object, where the level
three door object
transitions to the active
animation state. Upon the
level three door object
entering the active
animation state, the player
object traverses towards
the level three door object
again, until relatively close
together and collides with

Third puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level three
trigger object, and when the
third puzzle room
interactions have not been
complete, but the first and
second puzzle room
interactions have been
complete.

Third puzzle room scene is
transitioned to and loaded,
upon the player object
colliding with the level three
trigger object, and when the
third puzzle room
interactions have not been
complete, but the first and
second puzzle room
interactions have been
complete.

interactions have
been complete.

the level three trigger
object.

5 First level scene is
transitioned to and
loaded, upon the
player object
colliding with the
first puzzle room
door level and leave
level one trigger
objects, when the
first puzzle room
interactions are
complete.

Player object traverses
towards puzzle room one
door object until relatively
close together and collides
with the leave level one
trigger object, where the
puzzle room one door
object transitions to the
active animation state.
Upon the puzzle room one
door object entering the
active animation state, the
player object traverses
towards the puzzle room
one door object again,
until relatively close
together and collides with
the leave level one trigger
object.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
one trigger object, when the
first puzzle room interactions
have been complete.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
one trigger object, when the
first puzzle room interactions
have been complete.

6 First level scene is
transitioned to and
loaded, upon the
player object
colliding with the
second puzzle room
door level and leave
level one trigger
objects, when the
second puzzle room
interactions are
complete.

Player object traverses
towards puzzle room two
door object until relatively
close together and collides
with the leave level two
trigger object, where the
puzzle room two door
object transitions to the
active animation state.
Upon the puzzle room two
door object entering the
active animation state, the
player object traverses
towards the puzzle room
two door object again,
until relatively close
together and collides with
the leave level two trigger
object.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
two trigger object, when the
second puzzle room
interactions have been
complete.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
two trigger object, when the
second puzzle room
interactions have been
complete.

7 First level scene is
transitioned to and
loaded, upon the
player object
colliding with the
third puzzle room
door level and leave
level three trigger
objects, when the
third puzzle room
interactions are
complete.

Player object traverses
towards puzzle room three
door object until relatively
close together and collides
with the leave level three
trigger object, where the
puzzle room three door
object transitions to the
active animation state.
Upon the puzzle room
three door object entering
the active animation state,
the player object traverses
towards the puzzle room
three door object again,
until relatively close
together and collides with
the leave level three
trigger object.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
three trigger object, when
the third puzzle room
interactions have been
complete.

First level scene is
transitioned to and loaded,
upon the player object
colliding with the leave level
three trigger object, when
the third puzzle room
interactions have been
complete.

Appendix P:

Table 17: Performance profiling test cases, loading screen scene

Case Summary Process Actual result(s)

1 Loading screen scene
start-up.

Load into the loading
screen scene, capture
performance using
Unity profiler.

Peak usage: CPU (66.8%), GPU (79.7%), RAM (0.414GB)
Minimum usage: CPU (40.5%), GPU (20.2%), RAM (0.412GB)
Average FPS: 142.80

2 Loading screen scene
disclaimer window
button appear.

Load into the loading
screen scene, interact
with start button object
and capture
performance using
Unity profiler.

Peak usage: CPU (53.0%), GPU (79.6%), RAM (0.418GB)
Minimum usage: CPU (33.1%), GPU (9.1%), RAM (0.417GB)
Average FPS: 142.07

3 Loading screen scene
disclaimer window
button disappear.

Load into the loading
screen scene, interact
with disclaimer window
button object and
capture performance
using Unity profiler.

Peak usage: CPU (64.6%), GPU (92.2%), RAM (0.454GB)
Minimum usage: CPU (37.1%), GPU (41.9%), RAM (0.451GB)
Average FPS: 142.81

Table 18: Performance profiling test cases, first level scene

Case Summary Process Actual result(s)
1 First level scene start-up. Load into the first level

scene, capture
performance using
Unity profiler.

Peak usage: CPU (51.7%), GPU (96.6%). RAM (1.54GB)
Minimum usage: CPU (96.2%), GPU (6.1%), RAM (1.54GB)
Average FPS: 140.23

2 First level scene roaming. Load into the loading
screen scene, roam the
scene and capture
performance using
Unity profiler.

Peak usage: CPU (72.8%), GPU (80.2%), RAM (1.85GB)
Minimum usage: CPU (32.7%), GPU (3.2%), RAM (1.84GB)
Average FPS: 116.44

3 First level scene puzzle
door objects transition to
the active animation
state.

Load into the loading
screen scene, collide
with the puzzle door
object triggers and
capture performance
using Unity profiler.

Peak usage: CPU (80.1%), GPU (96.1%), RAM (1.82GB)
Minimum usage: CPU (45.4%), GPU (4.8%), RAM (1.82GB)
Average FPS: 140.38

Table 19: Performance profiling test cases, puzzle room two scene

Case Summary Process Actual result(s)
1 Second puzzle room

start-up.
Load into the second
puzzle room scene,
capture performance
using Unity profiler.

Peak usage: CPU (69.6%), GPU (79.0%), RAM (0.81GB)
Minimum usage: CPU (29.2%), GPU (32.9%), RAM (0.80GB)
Average FPS: 124.67

2 Second puzzle room
roaming.

Load into the second
puzzle room scene,
roam the scene and
capture performance
using Unity profiler.

Peak usage: CPU (75.4%), GPU (89.1%), RAM (0.78GB)
Minimum usage: CPU (49.2%), GPU (10.8%), RAM (0.77GB)
Average FPS: 128.45

3 Second puzzle room safe
puzzle interaction.

Interact with the safe
object and capture
performance using
Unity profiler.

Peak usage: CPU (72.3%), GPU (67.1%), RAM (0.77GB)
Minimum usage: CPU (51.6%), GPU (38.7%), RAM (0.77GB)
Average FPS: 137.56

4 Second puzzle room
table piece puzzle
interaction.

Interact with the table
globe object and
capture performance
using Unity profiler.

Peak usage: CPU (99.7%), GPU (85.3%), RAM (0.79GB)
Minimum usage: CPU (50.3%), GPU (3.1%), RAM (0.79GB)
Average FPS: 137.99

5 Second puzzle room
music box picture
interaction.

Interact with the music
box picture object and
capture performance
using Unity profiler.

Peak usage: CPU (76.0%), GPU (67.0%), RAM (0.79GB)
Minimum usage: CPU (14.3%), GPU (28.9%), RAM (0.79GB)
Average FPS: 139.02

6 Second puzzle room
carousel music box
interaction.

Interact with the
carousel music box
object and capture
performance using
Unity profiler.

Peak usage: CPU (79.2%), GPU (90.3%), RAM (0.84GB)
Minimum usage: CPU (51.4%), GPU (15.4%), RAM (0.84GB)
Average FPS: 132.75

7 Second puzzle room
music box interaction.

Interact with the music
box object and capture
performance using
Unity profiler.

Peak usage: CPU (70.7%), GPU (92.9%), RAM (0.97GB)
Minimum usage: CPU (49.7%), GPU (3.1%), RAM (0.97GB)
Average FPS: 108.61

8 Second puzzle room
wardrobe interaction.

Interact with the
wardrobe object and
capture performance
using Unity profiler.

Peak usage: CPU (65.9%), GPU (86.9%), RAM (1.3GB)
Minimum usage: CPU (45.1%), GPU (22.8%), RAM (1.3GB)
Average FPS: 106.91

9 Second puzzle room
bookshelf book
interaction.

Interact with the
bookshelf book object
and capture
performance using
Unity profiler.

Peak usage: CPU (72.1%), GPU (73.5%), RAM (1.26GB)
Minimum usage: CPU (50.5%), GPU (18.0%), RAM (1.26GB)
Average FPS: 136.51

10 Second puzzle room
bookstand interaction.

Interact with the
bookstand object and
capture performance
using Unity profiler.

Peak usage: CPU (75.0%), GPU (96.7%), RAM (1.27GB)
Minimum usage: CPU (34.9%), GPU (9.4%), RAM (1.27GB)
Average FPS: 129.57

11 Second puzzle room
piano interaction.

Interact with the piano
object and capture
performance using
Unity profiler.

Peak usage: CPU (76.3%), GPU (71.4%), RAM (1.3GB)
Minimum usage: CPU (50.8%), GPU (13.6%), RAM (1.3GB)
Average FPS: 136.37

Table 20: Performance profiling test cases, puzzle room one scene

Case Summary Process Actual result(s)
1 First puzzle room start-

up.
Load into the first
puzzle room scene,
capture performance
using Unity profiler.

Peak usage: CPU (74.5%), GPU (94.6%), RAM (1.22GB)
Minimum usage: CPU (48.7%), GPU (26.9%), RAM (1.21GB)
Average FPS: 140.30

2 First puzzle room
roaming.

Load into the first
puzzle room scene,
roam the scene and
capture performance
using Unity profiler.

Peak usage: CPU (74.7%), GPU (89.5%), RAM (1.22GB)
Minimum usage: CPU (45.4%), GPU (6.6%), RAM (1.21GB)
Average FPS: 135.48

3 First puzzle room initial
telephone interaction.

Interact with the
telephone object and
capture performance
using Unity profiler.

Peak usage: CPU (64.8%), GPU (74.0%), RAM (1.21GB)
Minimum usage: CPU (30.1%), GPU (28.1%), RAM (1.21GB)
Average FPS: 141.26

4 First puzzle room face
mask interaction.

Interact with the face
mask object and
capture performance
using Unity profiler.

Peak usage: CPU (78.0%), GPU (83.8.0%), RAM (1.22GB)
Minimum usage: CPU (46.5%), GPU (14.6%), RAM (1.22GB)
Average FPS: 139.76

5 First puzzle room glass
cabinet interaction.

Interact with the glass
cabinet object and
capture performance
using Unity profiler.

Peak usage: CPU (78.0%), GPU (94.4%), RAM (1.24GB)
Minimum usage: CPU (46.5%), GPU (33.6%), RAM (1.23GB)
Average FPS: 140.74

6 First puzzle room
clipboard interaction.

Interact with the
clipboard object and
capture performance
using Unity profiler.

Peak usage: CPU (71.9%), GPU (79.3%), RAM (1.25GB)
Minimum usage: CPU (46.1%), GPU (48.7%), RAM (1.24GB)
Average FPS: 139.57

7 First puzzle room audio
device interaction.

Interact with the audio
device object and
capture performance
using Unity profiler.

Peak usage: CPU (76.3%), GPU (94.8%), RAM (1.28GB)
Minimum usage: CPU (31.7%), GPU (45.5%), RAM (1.28GB)
Average FPS: 139.57

8 First puzzle room
telephone puzzle
interaction.

Interact with the
telephone object and
capture performance
using Unity profiler.

Peak usage: CPU (74.9%), GPU (76.0%), RAM (1.28GB)
Minimum usage: CPU (46.7%), GPU (3.4%), RAM (1.27GB)
Average FPS: 142.09

