
Advanced OO Programming C++ Adam Hubble

[Game concept: 8-ball pool]

For this assessment I had originally taken upon the idea of creating a snooker game; however, with
further consideration into the game’s rules and logic complexion, I had decided to adapt to a pool
game concept, which seemed more comprehensive. Choosing a pool game enabled me to aspire to a
concurrent mobile game ‘8 Ball Pool’, and had enabled me to better understand game mechanics,
the types of physics involved, and the ratio of physic forces applied to objects. Relative to physics
and game mechanics, my 8-ball pool game project incorporates the ‘Box2D’ physics engine and the
‘SFML library’ to achieve a full functioning pool game; with graphical, auditory and physical aspects. I
had chosen this engine and library due to academic familiarity and popularity of external
implementation.
Regarding object-orientated (OO) design, I had many considerations into fully abstracting my
project, by means of creating a base class, such as a game controller; alternatively, I had used the
‘main’ class to achieve all my functionality. I had originally used the main class as a network to test
my implementation of key press and release processing, this was relative to the transform of Box2D
bodies (b2Body). However, as I continued to implement game mechanics, my code had become
more advanced and more difficult to abstract class functionality into a base class. As a restraint, my
unit testing is limited, to only accessing functionality outside of the main class; and reuse is not as
coherent as it could potentially be. On the other hand, my project code is easily interpretable, I have
fluently abided by naming standards for all my variables and incorporated ‘pragma regions’ to
section my code. Also, computational performance proves to be efficient (see performance profile
testing), and I have attempted to keep loading files into memory (such as textures) at a minimum for
memory expense considerations.
Meanwhile, relating back to abstraction, each class initialises and instantiates variables and
functions relative to itself and is accessed in the main class via creating game objects corresponding
to each class. In doing so, enables my publicly assigned variables and functions from my classes to be
accessible within the main body. Within the main class, an instance of b2World is created, all my
sprite and shape objects are created and have their parameters set via passing by value and some
instances by reference, my textures are loaded from file into memory, text objects and sound
objects are set or called by function, the game logic is instantiated, a ray is casted from the cue ball,
key pressed and release processes are assigned to key specific operations, b2Body data and contact
listener are set as well as object update and b2World step functions to update my objects and Box2D
physics, per passing frame. Inevitably I have implemented a vast amount of game-appropriate
mechanics.
Relating to inheritance, my project incorporates inheritance on a superficial level. For contact
listening to function between two fixtures, my ‘BallEdgeListener’ class had to inherit from
‘b2Contact’ which operates to manage contact occurring between two fixture bodies. Integrating
contact listening, enabled my project to precisely output sound objects on a begin-contact basis. In
which, ‘BallEdgeListener’ also inherits from the ‘UI’ class, enabling all sound object functions to be
accessible and called upon, in instances of contact during program runtime. To achieve this, the
contact listener utilises a combination of body-to-body contact as well as body-to-sensor contact. I
did not require an end-contact function. Meanwhile, all of my text, sprite and shape objects are
drawn in the main class (window.draw()) and do not require to be rendered to a target; the sprite
and or shape can be returned to draw, my project does not inherit from ‘sf::Drawable’, it includes
‘SFML graphics’ to achieve such.

[Performance profile testing] See performance profile reports in GitHub repository:

CW-xGliff/Unit Test/Peformance Profiler/CPU profiler files (CPU usage)
CW-xGliff/Unit Test/Peformance Profiler/CPU profiler files (Memory usage)

Overall my performance profile reports conclude efficient use of CPU and memory (RAM) usage
from program runtime testing. CPU usage maximised at 37% at render window launch and

Advanced OO Programming C++ Adam Hubble

fluctuated between 24-27% for the remaining runtime (five minutes). Meanwhile memory usage
maximised and maintained a 142-143mb consumption during the render window launch and
remaining runtime.

[Blackbox testing]

Below are the Blackbox styled tests which I had conducted, these tests purposed to test functionality
not possible by using unit testing (see grid below).

Case Summary Process Actual result(s) Expected result(s)

1 Cue sprite pullback, using
‘Down’ key.

Down key pressed (and held). Cue sprite retracts from cue
ball parallel to time held down,
before reaching maximum
pullback (stops).

Cue sprite retracts from cue
ball and stops retracting
when the set maximum
pullback value is met.

2 Cue sprite rotates, using
‘Left’ and ‘Right’ keys.

Left and right keys pressed (and held), separately and
simultaneously.

Separate: cue sprite rotates at
an increment relative to the
time pressed and held.
Simultaneously: cue doesn’t
rotate.

Separate: cue sprite rotates
in either direction.
Simultaneously: cue doesn’t
rotate.

3 Playable balls can be
potted and appear in
allocated UI holes for
either player.

Strike balls with cue sprite when pulled back to apply
linear velocity to cue ball, aiming for balls targeted at
table pocket sprites.

Balls collide with table pockets,
position of balls is set correctly
for each player.

Balls collide with table
pockets, balls position based
on player ball type
assignment.

4 Cue ball transform resets
when potted (collides
with table pockets).

Strike cue ball with cue sprite when pulled back to
apply linear velocity to cue ball, aiming for table pocket
sprites.

Cue ball collides with table
pocket(s), position of cue ball
reverts to original position.

Cue ball has a new set
position and appears at its
original position.

5 Textures are correctly
loaded from file and are
applied to set shape and
sprite objects.

Implement output stream of text when !LoadFromFile,
and execute project code, checking for output to
console. Check render window for visual confirmation.

Textures load into render
window, no output to console.
Textures move relative to
object position(s).

Textures load from file.
Textures display in render
window. Textures transform
with objects.

6 Font style is loaded
correctly from file and is
applied to set text
objects.

Implement output stream of text when !LoadFromFile,
and execute project code, checking for output to
console. Check render window for visual confirmation.

Font loads into render window,
no output to console. Font
style applied to text objects.

Font load from file. Font
displays in render window.
Font styles text objects.

7 Sounds are played ball to
edge contact (contact
listener).

Strike cue ball with cue sprite when pulled back to
apply linear velocity to cue ball, aiming for table edge
shapes.

Cushion collide sound outputs
per ball to table edge collision.

Cushion collide sound plays
when ball(s) collide with
table edge(s).

8 Sounds are played ball to
ball contact (contact
listener).

Strike cue ball with cue sprite when pulled back to
apply linear velocity to cue ball, aiming for other ball
sprites.

Balls collide sound outputs per
ball to ball collision.

Balls collide sound plays
when ball(s) collide with
other ball(s).

9 Player pots
corresponding ball of his
type, player has another
turn.

Strike cue ball with cue sprite when pulled back to
apply linear velocity to cue ball, aiming for balls
targeted at table pocket sprites. When collision occurs,
ball(s) repositions to UI.

Corresponding player ball type
is potted, player turn counter
doesn’t increment. Same
player turn.

Player turn will occur again,
meaning that the player turn
counter value will not
increase.

10 Player names set in
console, displayed in
allocated namespaces on
UI.

Input characters into console window for each player
name when prompted upon program execution, press
Enter key to proceed (console window displays names).

Player names compare precise
to console window input and
set positions in UI.

Player names will display
correctly. Relative to set
positions and output exact
console input.

[Whitebox testing (unit testing)] See unit test files in GitHub repository:

CW-xGliff/Unit Test/

Unit testing purposes to test individual components within software, in which, in consideration of
my design implementation I was restraint from accessing any functions and variable from being
tested within my main class (int main()); I therefore conducted tests for functionality and variables
that are test accessible. My initial nine test cases test for the loading of sound files (.wav) into
memory, and for the loading of one instance. This was validated using non-equivalating Boolean
values, which both return the current value of a Boolean variable within my UI class. My next five
test cases test for pointer deallocation for when destructors are called during program termination,
similarly these test cases were conducted using non-equivalating Boolean values. Lastly, my
remaining three test cases test for view, player name text and game over text instantiation from
function calling; and are validated via non-equivalating unsigned integer and Vector2f variables.
All nineteen (19) test cases ‘passed’ (see unit test files in repo) and proves proper code functionality.

