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Problem Definition 
 

As the study aim of the project undertaken, the development of a Neural Network (NN) model was anticipated for detecting and classifying 

computer-networking intrusions, as an Intrusion Detection System (IDS) [1]; for which the NN model configured, should be capable of 

differentiating between ‘bad’ connections, namely intrusions or attacks, and ‘good’, ordinary connections. 

As the “most widely used data set for the evaluation of these systems” [2], the KDD Cup 1999 dataset [3] is applicated to both train and test 

the NN model configured for the problem domain bespoken. The dataset is comprised of a “standard set of data to be audited”, which includes 

a wide variety of intrusions simulated in a military network environment. Instructed for the purposes of the IDS proposed, a subset of the 

database is applied to the model, representing ten-percent of the original quantity. Thereby containing ‘41’ columns or features, and ‘494021’ 

rows of network packet data; the columns are representative of each connection’s features [4], where the last of which features is representative 

of their intrusion or attack type [5]. Therein, exists ‘23’ different classes of intrusion or attack, where each class of attack is associated with a 

category, namely: Denial-of-Service (DOS), Remote-to-Local (R2L), User-to-Root (U2R) and Probe, whereas a good connection is associated 

with the category: ‘normal’. 

Dataset Pre-Processing 
 

For implementation purposes, the Python [6] programming language was targeted as it “lets you work quickly and integrate systems more 
effectively”, as well as being a predominant contender in the field of Machine Learning (ML). The dimensionality of the dataset is configured 

to be reduced using numerous approaches, dependant of the binary or multiclass classifier active for the IDS’s configuration. Features that 
pose highly correlative natures with other features, that have missing field values (of ‘null’ type), or that can be identified by a single, constant 

value, are removed from the dataset. This aims to reduce the dimensional complexity of the dataset, and thus, the resultant amount of time 

required to train the model. For addressing feature removal, features can simply be ‘dropped’ from the dataset upon detecting missing values, 
value constancy or strong associations, or alternatively in compliance with a Singular Value Decomposition (SVD) technique, namely 

Principal Component Analysis (PCA); where the dataset when using said SVD, is projected into a lower dimensional space, whilst minimising 

information loss. For simplifying the multiclass classification capability of the relevant model, each of the ‘23’ unique classes of intrusion or 
attack are mapped to their respective category, numerically, using a label encoding technique that enables each of said categories to be 

interpreted and processed by the model, as a one hot encoded vector; for binary classification, each of the categories are instead, manually 

assigned the following numerical values: DoS = 1, normal = 0, Probe = 1, R2L = 1 and U2R = 1. Notably, all categorical features are encoded 
to numerical values, as ‘dummy’ features, except the target category of each intrusion type or attack, within the multiclass configuration of 

the model. Proceeding from feature mapping, each feature’s values are then relatively normalised for reducing their spatial complexities, to 

advance the efficiency of the models training procedure. 
 

Experimental Design 
 

Series of evaluative procedures were performed on both binary and multiclass configurations of the model derived. Said series concerned the 
trialling of feature removal techniques from the dataset, feature removal technique threshold value alteration, training and testing subset 

partition alteration, model architectural tuning concerning: active number of fully-connected layers (FCL’s), number of neurons comprising 

each FCL and the active optimiser algorithm, as well as model hyperparameter tuning. Additional to all the experiments listed, K-fold Cross 
Validation (CV) is trialled for a range of dataset folds, to evaluate the performance of the model on a series of limited data samples, for better 

acknowledging and addressing the model’s generalisation capabilities, when used to make predictions about samples of data that have 

not been used during training. For the exhaustive summary of model evaluation results, see Appendix A (multiclass classification model) and 
Appendix B (binary classification model). To note, cross-entropy loss functions were applicated to evaluate the performance of both binary 

and multiclass classification models explored.  

 

Model Evaluation 
 

Proceeding from the nature of the series of evaluative procedures conducted, it was found that the binary classification model configured, was 

capable of scoring a classification accuracy of ’99.96%’, which inevitably is adequate. Whereas the multiclass classification model configured, 

was capable of scoring a classification accuracy of ’99.93%’, that also is considered ample for purpose. For their performative visualisations 

across both training and validation procedures, line graphs were populated, which can be located within Appendix C for reference; each’s 

performance was validated by the relevant testing subset partition assigned, via K-fold CV (for binary classification) and an independent 
dataset partitioning technique (for multiclass classification). 

 

Conclusion 
 
Summarily, the work submitted reflects upon the learning features of the study, such as the incorporation of data analysis techniques, data pre-

processing techniques, dataset dimensionality reduction techniques, model configuration considerations and NN model performance 

evaluation methodologies. 
 

Future Work 
 

For future development purposes, it would be beneficial to explore hyperparameter tuning via optimisation algorithms, for acquiring parameter 

value optimality. As well, would trialling other NN’s for classification and expanding model tuning. 
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Appendices 
 

Appendix A 

 

Multiclass Classification Model Fine-tuning 

 

• Removing features of constant value from the dataset activeness alteration 

 

 
 

 
 

Removing Constant Features 

Removing Features? Model Loss (Error) Model Accuracy (%) 

True 0.010 99.78% 

False 0.016 99.72% 

 

 

• Removing highly correlated features (Pearson Correlation Coefficient) threshold value 

alteration 

 



 

 
 

 
 

 
 

 
 



 
 

 
 

 
 

Removing Highly-Correlated Features 

Correlative Threshold Model Loss (Error) Model Accuracy (%) 

0.95 0.003 99.90% 

0.9 0.004 99.89% 

0.85 0.029 99.34% 

0.8 0.006 99.87% 

0.75 0.004 99.91% 

0.7 0.014 99.38% 

0.65 0.030 99.31% 

0.6 0.013 99.74% 

 

 

• Removing highly correlated features (Pearson Correlation Coefficient) activeness alteration 

 

 



 

 
 

Removing Highly-Correlated Features 

Removing Features? Model Loss (Error) Model Accuracy (%) 

True 0.004 99.91% 

False 0.029 99.34% 

 

 

• Principal Component Analysis (PCA) number of components dataset reduced to (when 

correlation features not used) alteration 

 

 
 

 
 

 
 



 
 

 
 

 
 

Principal Component Analysis (PCA) 

Dimensionality Reduction Model Loss (Error) Model Accuracy (%) 

30 0.005 99.87% 

25 0.031 99.26% 

20 0.027 99.36% 

15 0.038 99.24% 

10 0.039 99.22% 

5 0.012 99.58% 

 

 

• Principal Component Analysis (PCA) activeness (when correlation features not used) 

alteration 

 

 



 

 
 

Principal Component Analysis (PCA) 

Active? Model Loss (Error) Model Accuracy (%) 

True 0.005 99.87% 

False 0.004 99.91% 

 

 

• Training and testing data split alteration 

 

 
 

 
 

 
 



 
 

 
 

 
 

 
 

 
 



 
 

 
 

 
 

Training and Testing Dataset Partition 

Dataset Partition (%) Model Loss (Error) Model Accuracy (%) 

0.9 | 0.1 0.006 99.85% 

0.85 | 0.15 0.015 99.74% 

0.8 | 0.2 0.007 99.83% 

0.75 | 0.25 0.006 99.82% 

0.7 | 0.3 0.004 99.91% 

0.65 | 0.35 0.007 99.84% 

0.6 | 0.4 0.010 99.79% 

0.55 | 0.45 0.038 99.25% 

0.5 | 0.5 0.011 99.77% 

0.45 | 0.55 0.008 99.84% 

0.4 | 0.6 0.036 99.29% 

 

 

• K-fold Cross Validation (CV) dataset partitioning alteration 

 



 

 

 
 

 

 



 

 
 

 

 

 



 

 
 

 

 

 



 

 

 
 

 

 



 

 

 

 

 



 

 

 

 
 

K-fold Cross Validation (CV) 

K-folds Model Loss (Error) Model Accuracy (%) 

2 0.036 99.30% 

3 0.010 99.78% 

4 0.006 99.85% 

5 0.010 99.80% 

10 0.010 99.81% 

 

 

• K-fold Cross-validation (CV) activeness alteration 

 



 
 

 
 

K-fold Cross Validation (CV) 

Active? Model Loss (Error) Model Accuracy (%) 

True 0.006 99.85% 

False 0.004 99.91% 

 

 

• Active model optimiser algorithm alteration 

 

 
 

 
 



 
 

 
 

 
 

 
 

 
 



 
 

Model Optimiser Algorithm 

Optimiser Algorithm Model Loss (Error) Model Accuracy (%) 

Adadelta 0.618 79.18% 

Adagrad 0.673 79.36% 

Adam 0.004 99.91% 

Adamax 0.005 98.81% 

Ftrl 0.729 79.27% 

Nadam 0.009 99.80% 

RMSprop 0.043 99.34% 

SGD 0.559 79.24% 

 

 

• Training dataset batch size alteration 

 

 
 

 
 

 



 

 
 

Training Dataset Sample (Batch) Size 

Batch Sample Size Model Loss (Error) Model Accuracy (%) 

256 0.038 99.26% 

128 0.004 99.91% 

64 0.010 99.80% 

32 0.008 99.79% 

 

 

• Fully-connected layer (FCL) count in the model (when model topology is [32, 32, 32, 5, 5]) 

alteration 

 

 
 

 
 

 
 

Model Fully-Connected Layer (FCL) Count 



FCL Count Model Loss (Error) Model Accuracy (%) 

3 0.013 99.67% 

4 0.006 99.85% 

5 0.004 99.91% 

 

 

• Model topology (neuron counts) alteration 

 

 
 

 
 

 
 

 
 



 
 

 
 

 
 

 
 

 
 



 
 

 
 

 
 

 
 

 
 



 
 

Model Topology 

Neurons Per Layer Model Loss (Error) Model Accuracy (%) 

32, 32, 32, 5, 5 0.004 99.91% 

80, 80, 80, 80, 5 0.005 99.87% 

70, 70, 70, 70, 5 0.006 99.86% 

60, 60, 60, 60, 5 0.006 99.86% 

50, 50, 50, 50, 5 0.007 99.85% 

40, 40, 40, 40, 5 0.010 99.81% 

30, 30, 30, 30, 5 0.036 99.31% 

80, 80, 80, 5, 5 0.013 99.78% 

40, 40, 40, 5, 5 0.008 99.83% 

30, 30, 30, 5, 5 0.007 99.81% 

30, 30, 30, 30, 5 0.011 99.73% 

20, 20, 20, 20, 5 0.008 99.81% 

20, 20, 20, 5, 5 0.014 99.66% 

35, 35, 35, 5, 5 0.009 99.82% 

 

 

• Model layer transfer function alteration 

 

 
 

 
 



 
 

 
 

 

 
 

 
 

 
 



 
 

 

 
 

 
 

Model Layer Transfer (Activation) Functions 

Transfer Function Per layer Model Loss (Error) Model Accuracy (%) 

relu, relu, relu, softmax, sigmoid 0.004 99.91% 

relu, relu, relu, softmax, relu 3.354 79.19% 

sigmoid, sigmoid, sigmoid, softmax, sigmoid 0.051 98.98% 

relu, relu, relu, softmax, softmax 0.009 99.82% 

sigmoid, sigmoid, sigmoid, softmax, softmax 0.050 99.00% 

relu, relu, relu, relu, softmax 0.007 99.82% 

sigmoid, sigmoid, sigmoid, sigmoid, softmax 0.011 99.72% 

relu, sigmoid, sigmoid, relu, softmax 0.009 98.80% 

relu, relu, softmax, relu, softmax 0.024 99.84% 

relu, softmax, relu, softmax, sigmoid 0.007 99.85% 

 

 

Appendix B 

 

Binary Classification Model Fine-tuning 

 

• Removing features of constant value from the dataset activeness alteration 

 



 
 

 
 

Removing Constant Features 

Removing Features? Model Loss (Error) Model Accuracy (%) 

True 0.012 99.87% 

False 0.029 99.32% 

 

 

• Removing highly correlated features (Pearson Correlation Coefficient) threshold value 

alteration 

 

 
 

 
 



 
 

 
 

 
 

 
 

 
 

Removing Highly-Correlated Features 

Correlative Threshold Model Loss (Error) Model Accuracy (%) 

0.95 0.003 99.92% 



0.9 0.030 99.30% 

0.85 0.030 99.31% 

0.8 0.007 99.82% 

0.75 0.012 99.87% 

0.7 0.007 99.86% 

0.65 0.031 99.30% 

0.6 0.050 98.99% 

 

 

• Removing highly correlated features (Pearson Correlation Coefficient) activeness alteration 

 

 

 
 

 
 

Removing Highly-Correlated Features 

Removing Features? Model Loss (Error) Model Accuracy (%) 

True 0.004 99.91% 

False 0.003 99.92% 

 

 

• Principal Component Analysis (PCA) number of components dataset reduced to (when 

correlation features not used) alteration 

 

 
 



 
 

 
 

 
 

 
 

 
 

 

 

Principal Component Analysis (PCA) 



Dimensionality Reduction Model Loss (Error) Model Accuracy (%) 

30 0.030 99.32% 

25 0.031 99.28% 

20 0.028 99.37% 

15 0.031 99.29% 

10 0.031 99.29% 

5 0.028 99.34% 

 

 

• Principal Component Analysis (PCA) activeness (when correlation features not used) 

alteration 

 

 
 

 
 

Principal Component Analysis (PCA) 

Active? Model Loss (Error) Model Accuracy (%) 

True 0.028 99.37% 

False 0.003 99.92% 

 

 

• Training and testing data split alteration 

 

 
 



 
 

 
 

 
 

 
 

 
 



 
 

 
 

 
 

Training and Testing Dataset Partition 

Dataset Partition (%) Model Loss (Error) Model Accuracy (%) 

0.9 | 0.1 0.004 99.92% 

0.85 | 0.15 0.003 99.91% 

0.8 | 0.2 0.003 99.94% 

0.75 | 0.25 0.004 99.91% 

0.7 | 0.3 0.003 99.92% 

0.65 | 0.35 0.005 99.84% 

0.6 | 0.4 0.004 99.90% 

0.55 | 0.45 0.004 99.91% 

0.5 | 0.5 0.004 99.92% 

 

 

• K-fold Cross Validation (CV) dataset partitioning alteration 

 



 

 

 
 

 

 



 

 
 

 

 

 



 

 
 

 

 

 



 

 

 
 

 

 



 

 

 

 

 



 

 

 

 
 

K-fold Cross Validation (CV) 

K-folds Model Loss (Error) Model Accuracy (%) 

2 0.004 99.91% 

3 0.003 99.92% 

4 0.003 99.94% 

5 0.004 99.91% 

10 0.002 99.95% 

 

 

• K-fold Cross-validation (CV) activeness alteration 

 



 
 

 
 

K-fold Cross Validation (CV) 

Active? Model Loss (Error) Model Accuracy (%) 

True 0.002 99.95% 

False 0.003 99.94% 

 

 

• Active model optimiser algorithm alteration 

 

 
 

 
 



 
 

 
 

Model Optimiser Algorithm 

Optimiser Algorithm Model Loss (Error) Model Accuracy (%) 

Adam 0.002 99.95% 

Adamax 0.030 99.30% 

Nadam 0.007 99.89% 

RMSprop 0.493 80.56% 

 

 

• Training dataset batch size alteration 

 

 
 

 
 



 
 

 
 

 

 

Training Dataset Sample (Batch) Size 

Batch Sample Size Model Loss (Error) Model Accuracy (%) 

256 0.003 99.94% 

128 0.002 99.95% 

64 0.003 99.91% 

32 0.003 99.92% 

 

 

• Fully-connected layer (FCL) count in the model (when model topology is [32, 32, 32, 5, 5]) 

alteration 

 

 

 
 



 
 

Model Fully-Connected Layer (FCL) Count 

FCL Count Model Loss (Error) Model Accuracy (%) 

3 0.003 99.92% 

4 0.003 99.92% 

5 0.002 99.95% 

 

 

• Model topology (neuron counts) alteration 

 

 
 

 
 

 
 



 
 

 
 

 
 

 
 

Model Topology 

Neurons Per Layer Model Loss (Error) Model Accuracy (%) 

32, 32, 32, 5, 5 0.002 99.95% 

80, 80, 80, 80, 5 0.002 99.95% 

70, 70, 70, 70, 5 0.003 99.93% 

60, 60, 60, 60, 5 0.002 99.95% 

50, 50, 50, 50, 5 0.002 99.96% 

40, 40, 40, 40, 5 0.004 99.90% 

30, 30, 30, 30, 5 0.003 99.93% 

 

 

• Model layer transfer function alteration 

 



 
 

 
 

 
 

 
 

 
 



 
 

Model Layer Transfer (Activation) Functions 

Transfer Function Per layer Model Loss (Error) Model Accuracy (%) 

relu, relu, relu, softmax, sigmoid 0.002 99.96% 

sigmoid, sigmoid, sigmoid, softmax, sigmoid 0.004 99.92% 

relu, relu, relu, softmax, softmax 0.002 80.41% 

sigmoid, sigmoid, sigmoid, softmax, softmax 0.005 80.41% 

relu, relu, relu, relu, softmax 0.005 80.41% 

relu, softmax, relu, softmax, sigmoid 0.003 99.93% 

 

 

Appendix C 

 

Multiclass Classification Model Performance 

 

 
 

 

Binary Classification Model Performance 

 

 


