
De Montfort University ©2021

Pathfinding Pac-Man: Shortest Path Optimisation

Using Search Algorithms

Jack Wilson Moorin

Faculty of Computing, Engineering and

Media

De Montfort University

Leicester, United Kingdom

P17190172

Adam Leonard Hubble

Faculty of Computing, Engineering and

Media

De Montfort University

Leicester, United Kingdom

P17175774

Arpit Sharma

Faculty of Computing, Engineering and

Media

De Montfort University

Leicester, United Kingdom

P2613237

Abstract — In graph theory, a shortest-path algorithm

establishes the path of nodes that collectively, constitute to the

minimal cost between any two vertices in any given graph.

Pathfinding for intelligent agents within the domain of video

game production has been investigated for much time now

and is arguably the most problematic, artificial intelligence

(AI) behavioral discipline to address absolute optimality for;

acquiring budget-friendly computation and optimal path

construction is provably challenging and desired for the

evolving complexities of modernized video games. This paper

anticipates the shortest-path problem relative to optimization,

in exploration of the application of optimal variates of search

algorithms, used in contemporary works, to address a ‘Rat in

a Maze’ orientation of the arcade production, Pac-Man.

Keywords — graph theory, shortest-path algorithm, minimal

cost, graph, pathfinding, intelligent agents, video game,

problematic, artificial intelligence, optimality, budget-friendly

computation, optimal path construction, search algorithms, Rat

in a Maze, Pac-Man

I. INTRODUCTION

 Computational Intelligence (CI) is the study of the
design of intelligent agents, which are systems that within a
given environment, exhibit behaviours regarded as being
intelligent. Collectively, intelligent agents are generally
proposed by the “theory, design, application and
development” [1] of biologically and linguistically inspired
computational paradigms, that traditionally constitute to the
“three main pillars of CI”, which are: Neural Networks
(NN’s), Fuzzy Systems (FLS’s) and Evolutionary
Computation (EC); however, many of the “nature inspired”
computing paradigms have overtime advanced and become
more relevant to applications in what is, an evolving field
[2]. So much so, the paradigms in the recent era have
adopted a proliferate presence within “developing
successful intelligent systems, including games and
cognitive developmental systems” [1]; considering the
recent boom of research into the field of Deep Learning
(DL), CI has become a “core method for artificial
intelligence” applications, such that some of the most
successfully regarded “AI systems are based on CI”
principles.

 Parallel to the paradigms sponsored by CI, Artificial
Intelligence (AI) is also the study of the design of intelligent
agents to “mimic the capabilities of the human mind” [3],
led by its “pluridisciplinarity” [4], AI facilitates “learning
from examples and experience, recognizing objects,
understanding and responding to language, making
decisions, solving problems” [3] and combinatorically
applying said concepts to render computing systems
“capable of solving problems that usually require the
ability of human beings” [4]. Such problems typically

concern a high-time complexity to resolve and natural, or
biological-based outlooks, specific to visual recognition and
natural language processing (NLP) for example. As the
“first large scientific community” [2], many problem
domains requiring intelligence to be solved has exposed AI
to a range of applications concerning theorem proving,
NLP, speech recognition and understanding, image
interpretation and vision, robotics, and expert systems
[4][5]. Despite the “several attempts to design intelligence
with the same kind of flexibility as that of a human”, over
the fifty-years that AI has been a “defined and active field”
[6], none has been met with much success [5]; for which is
why the optimality of AI behaviours is currently known
problematic to acquire.

 In correspondence with the abovementioned quandary,
the premise of this paper is to review the problem domain
of graph theory, specifically within focus of the shortest-
path problem, relevant to approaching path optimisation in
unweighted (undirected) graph trees. For which, solutions
are proposed to mitigate and address, in compliance with the
array of shortest-path or search algorithms used within
contemporary applications, to yield provably optimal
solutions for space-navigation efficiency; this problem is
contextualised for each solutions performance in the classic,
arcade video game production: Pac-Man [7].

 Conveniently, the paper is componentised into eight
sections, one of which being this very introduction.
Encompassed by the sections proceeding this passage, are
discussions relevant to the contextual nature of the problem
domain bespoken and works submitted to the field that are
conceptually similar to the work proposed. As well, are the
design choices and implementation synopses of the
solutions investigated, for the software platform relevant,
and lastly, are evaluative and concluding remarks
concerning the optimality of the solutions submitted for the
domain.

II. BACKGROUND

A. Problem Definition

With regards to the definition of the problem tasked, the

problem can be characterized simply, as the establishment

of the “optimal path in a graph from a source vertex to a

destination vertex while minimizing total cost” [8], or

otherwise, as the extraction of the “shortest route

(distance), the fastest speed and the lowest expenditure” [9]

of traversal, from the vertices comprising a graph, that are

situated between the corresponding points of origin

(source) and interest (destination). Formally, the problem

is renowned as the Shortest-Path Problem (SPP),

exemplified as: “finding the quickest way to get from one

city to another on a road map” [8], which can otherwise be

extended to the Travelling Salesperson Problem (TSP)

[10], defined as: “finding the route for the shortest tour

between cities with the condition that, each city is visited

only once and the returning point of the tour will be the

exact starting point of the tour”. Although, providing the

nature and scope of work proposed for the Pac-Man

application, TSP cannot be strictly adhered to given the

narrow structural arrangement and limited adjacencies of

coin collectibles (the cities) occupying (traversable) nodes

in the graph of the game; thus, TSP considerations are

neglected from the applications state, which subsequently

informs that the solutions submitted are strictly shortest-

path algorithms.

B. Field Research

Finding the shortest path between a point of origin and
a point of interest in a graph is an “important problem” [11],
whose solution has many applications. Ranging from car
navigations systems [12], traffic simulations [13], transport
scheduling [14], internet route planning [15], web searching
[16], and vital to our investigation, direction orientated path
planning within video games [17]. In the context of video
games, an optimal path between “any two locations is the
least cost path rather than the shortest path”; given the
contrasting example of a horizontal pathway and a pathway
mapped to the concavity of a mound that are of equal length
(geographical distance), relative to time, the cost incurred
from ascending, and descending said mound would
inevitably be more expensive than traversing along a
horizontal plane, only. Currently within the field and
context in focus, solutions submitted for pathfinding either
provide a “high speed search by sacrificing accuracy or
produce an optimal path but using more time and
resources”, such that acquiring absolute optimality in path
planning remains a contemporary subject of study.

Scientists and mathematicians have long studied the
problem domain, that is pathfinding [18]. As a “classical
graph theory algorithm problem”, the problem was first
solved by Dijkstra’s algorithm in 1959 [19], which is well-
recognised and remains to be one of the best “among various
algorithms for the shortest-path problem” in the present day
[20]. Evans and Minieka [21] proposed that most path
algorithms are bound by three categories: “the single-source
shortest-path algorithms, the all-pairs shortest-path
algorithms, and the k-shortest-path algorithms”. Summarily,
single-source shortest-path algorithms compute the shortest
paths from a specified point of origin (source) to a point of
interest (destination), or to all other vertices comprising the
graph. Whilst all-pair shortest-path algorithms compute the
shortest-paths between every pair of vertices comprising the
graph, and k-shortest-path algorithms not only compile the
optimal path between specified vertices but until kth best
paths are computed. From which the pathfinding or
planning problem can be characterised as optimally routing
through “graphs that contain sets of vertices and edges”,
representing traversable nodes and their adjacencies.

Relevant to video game productions, pathfinding
“generally refers to finding the shortest route between two
end points” [22], with the support of shortest-path
algorithms, typically of the single-source type. Almost all
video games “require pathfinding to make the game more
human-like” [23] and such it has become imperative to

apply optimised pathfinding algorithms, since there are
many “real-time games” being developed nowadays, that
require solutions to be able to “solve pathfinding problems
on a more complex environment with limited time and
resources” [22]. As games are one of the “popular forms of
entertainment” [23] for which has extended to digital
platforms such as “mobile phones”, there has been an
“increasing interest” in pathfinding in games, which is why
the previous “two decades have seen a growing trend”
towards applied AI in video games. Such that pathfinding is
one of the most prevalent “applications of game research
among AI techniques” at present, where “dozens of revised
algorithms have been introduced successfully” [22] to the
field. Undoubtedly, games can be much more fun and
engaging “when the agents in the game are smart enough to
take the shortest path” [23], which arises the most
“common” pathfinding problem in video games, an agent’s
movement. Given that video games are recognised as
“excellent experiment” features for pathfinding research,
we propose the classic arcade production: Pac-Man, as our
catalyst for identifying the optimal shortest-path algorithm,
via comparative analysis; the algorithms elected for the
investigation proposed, express relevance to the
recommendations of contemporary works existing in the
field already. Reasoning for the production’s nomination
derives from its many adaptations to related works already
existing in the domain [24][25][26].

III. LITERATURE REVIEW

A. Common

The role of pathfinding is the most ‘visible’ [27]
problem in the domain of AI and video games. Intelligent
pathfinding is relevant for all games in which the movement
of the object under consideration, is calculated by the
computer, instead of being player-controlled. Objects can
identify to be anything in a game, such as a person, vehicle,
or a miscellaneous item, which for the investigation
proposed, is Pac-Man, an agent who traverses through a
two-dimensional grid upon finding the shortest path to the
closest coin collectible, in absence of the enemies or ghosts
featured in the original orientation of the game.

For discovering the shortest path from the Pac-Man
avatar to the target ahead of its movement using the ‘plan
before move’ [27] strategy, a literature review is purposed
for identifying a series of optimal, shortest-path algorithms
specific to the application of unweighted graphs, within a
two-dimensional space (matrix), with known points of
origin (source) and interest (destination). This survey was
conducted over the course of several weeks, to compile
promising solutions for the problem domain bespoken.

Algorithm Completeness – the ability of the algorithm,
representing the probability at which it is “guaranteed to
return a solution” [28], or in other words, its competency to
unfailingly find the target every time one is assigned, and
subsequently generate a fully-connected path. In video
game productions, algorithmic completeness is a vital
characteristic, as without it, a game would promote
behavioural defects of undesirable natures; perhaps leading
to hardware or software malfunctioning, that resultingly
degrades a player’s experience and their continuing
engagements with it.

Space complexity – the number of total cells or nodes
visited by the algorithm for path planning, as a function of

depth, where the branches (adjacencies) from each node are
represented by cells within a grid formation; this is
dependent upon the number of different cells that Pac-Man
“can reach in any sequence of actions” [29]. According to
the structural arrangement of the games environment, each
cell in the grid can have a maximum of four neighbouring
cells. Therefore, the maximum number of branches to each
node in the generated graph, cannot exceed four. As for the
dimensionality of the grid, the environment of the game is
composited up of thirty rows, which is greater than the
number of featured columns, that supports twenty-eight; the
maximum depth of the graph will always be less than thirty
nodes in length, given this layout. But, the space complexity
is still high enough to be taken into consideration. An
algorithm offering less space complexity or otherwise,
considering fewer nodes for path planning, is preferred.

Time complexity – similarly, the total amount of time
consumed by the algorithm to traverse the graph, is a
function of the number of branches expanding each node in
the graph, as well as the graphs depth; thus revealing the
relative time taken by the algorithm to reach the target node
specified. Therefore, the algorithm operating with lesser
time complexity is favourable.

B. Adam Hubble

Since the advent of the computer, researchers have
invested more of their attention and time into the “optimal
path selection problem” [30], otherwise known to be the
shortest-path problem, which as one of the “well-studied
topics in computer science” [31], specifically in graph
theory, has been diversified across many fields concerning
video games, robotics, route planning, traffic control and
routing protocols [32], to name a few contemporary
examples. Consequently, there has been a recent “surge of
research in shortest-path algorithms due to said problems
numerous and diverse applications” [31], in attempt of
alleviating sub-optimal approaches to resolving the
problem. Generally, the shortest-path problem is
represented via graphs, for which a graph can be
characterised as a “set of vertices and edges”, such that the
edges connect to the vertices to form a graph tree; where
along the edges of said graphs, it is possible to traverse from
one vertex to another, in attempt to route through the graph’s
topology. Relative to the “lengths” of the edges employed
by a given graph, as otherwise recognised as “weights”, the
lengths of the edges are representative of the “cost between
two vertices in a graph”, normally used for “calculating the
shortest path from one point to another point”. Typically,
pathfinding anticipates the minimisation of the cost or “path
length from start to goal” [32] destinations, for which there
exists “many algorithms” [31] to address, where each is
purposed for compiling the “shortest route (distance), at the
fastest speed and with the lowest expenditure” [9] of
traversal. Translated to video game applications, path
planning presents to be a significant behaviour of a non-
player controlled (NPC) character or agent, in finding the
“shortest, fastest, and cheapest way possible to navigate
from one place to another within the game environment”
[33]; environments within such games are commonly
represented by grid-based maps [26].

Recognised as one of the “best known and widely used
pathfinding algorithms” [32], A* (pronounced a-star),
proposed by Hart, Nilsson, and Raphael in 1967 [34], exists
as an extension to Dijkstra’s algorithm [19], by adding a

heuristic value that “estimates the distance from the start
node to the goal node” concerned in a path. Undeniably,
various search algorithms were published prior to its
emergence, one of which being the Depth-First Search
(DFS) algorithm [34]. But since its “success” in the field of
pathfinding problems and specifically game AI [22], it has
been known for “many researchers to have focused on
variants of A* algorithm”, such that many “revised
pathfinding algorithms” have been introduced; the success
of the algorithm is acknowledged to be governed by its
“more convenient capabilities compared to others” [23], that
fundamentally enable the algorithm to establish a “feasible
path between two points in a short period of time" [34].
Firstly, A* is “guaranteed to find a path from the start to the
goal if there exists a path” [22], and it is considered
“optimal” if the estimated cost calculated is an “admissible
heuristic”, meaning that the heuristic cost ℎ(𝑛) is “always
less than or equal to the actual cheapest path cost from 𝑛 to
the goal”, otherwise known as the geographical distance
𝑔(𝑛). Lastly, A* is recognised to make the “most efficient
use of the heuristic” calculated, where no other search
algorithm uses the same heuristic function to find an
“optimal path that examines fewer nodes than A*”. Hence
A* algorithm is regarded as the “most advanced” [25] and
“provably optimal” [22] algorithm available for the interest
of the problem domain being explored.

Extending the study upon the A* algorithm, a heuristic
approach to path planning infers that rather than a
“exhaustive expansion” of a graph, like that of Dijkstra’s
algorithm, which states that “all possible states must be
examined”, only the states or nodes comprising the graph
that “look like better options, are examined”; thus, the
advantage of A* is that it “does not need to traverse all
nodes, but instead proceeds in the direction of the desired
road (the target node that needs to be experienced)” [30].
This aligns adequately with the progressive absence of coin
collectibles in the grid of the game’s environment, that Pac-
Man would ‘eat’ overtime, from recursively navigating to
and from their corresponding nodes; the heuristic function
used by A* is purposed to estimate the “cost from any nodes
on the graph to the desired destination” [22], only. By
introducing the heuristic approach, A* algorithm “improves
the computational efficiency” of Dijkstra’s algorithm,
“significantly”. Notably, if the estimated cost returned by
the heuristic function is known to be exactly equal to the
actual cost, only the nodes comprising the best path are
selected and thus, no other node in the grid is expanded.
Implying that a “good” heuristic that can accurately estimate
the cost to a specified goal node, may allow the algorithm to
operate “much quicker”. Although, using a heuristic that
“overestimates” the actual cost to the goal node, typically
results in a “faster search with a reasonable path” being
generated nonetheless, as the search “pushes hard” on the
closest nodes to the goal; this resorts to fewer nodes being
explored, when compared to “non-overestimation heuristic
approaches”.

However, it must be acknowledged that the A*
algorithm “often finds the optimal path needed because the
heuristic function is not suitable”; therefore, meaning that
the “success rate of using the A* algorithm to select the
optimal path is not very high” [30]. Although A* algorithm
has the “shortest time in theory” [35] and is arguably about
as “good as a search algorithm as you can find so far” [22],
it also sponsors a series of performance defects that must be

addressed. Importantly, A* algorithms spatial growth is
“exponential” [35], where the time complexity of the

algorithm is 𝑂(𝑏𝑑) and space complexity is 𝑂(𝑏𝑑) [36],
such that when searching in larger game environments, A*
becomes “expensive in terms of execution times when the
number of nodes in the map increases” [34]; resulting in the
search process and games continuity alike, advancing “more
and more slowly” [35]. Also, maintaining focus upon the
scenario presented, A* algorithm requires a “huge amount
of memory to track the progress of each search” [22], that in
terms of memory allocation, can “rapidly change to the
environment” [34]; consequently causing “excessive”
memory leaks, before “producing the solution”. Due to
these limitations, variants of the A* algorithm have later
since been “introduced to solve the pathfinding problem”,
hence the birth of the popular: Anytime Repairing A*
(ARA*) [37], Theta*, D*, D* Lite, Field D*, AD* and
Iterative-Deepening A* [36] search algorithms, that each
attempt to “reduce space requirements in A*” [22] or to
hasten calculations in “dynamic environments” [32].
However, given the domain of Pac-Man and the productions
relatively small environment, space complexity and the
resultant time complexity is not of much concern for the A*
algorithm, in which “obstacle density” is sought to be the
only contributing factor.

Providing its popularity in the game industry, Cui and
Shi [22] regard A* algorithm as the “provably optimal
solution for pathfinding” in modern video games, where
despite being easy to understand, its implementation in a
“real computer game is non-trivial”. The authors reveal the
algorithms relevance to popular, contemporary production
titles, like that of Civilisation V and Counter-Strike,
alongside the “classic real-time strategy game”, Age of
Empires. Concluding with the A* algorithm being
performatively optimal for the application of video games,
for which is why it has become to be the “most popular
algorithm in pathfinding”, wholesomely. The authors
further pledge ways to “improve the performance of A*”
and acknowledge its “huge success” as being the catalyst for
the efforts that have already been made by relevant
researchers in the field, to optimise and revise the
architecture of it. Assuming the space complexity of the
Pac-Man production, the authors suggest that A* is in fact a
candidate solution, as it will have “less work to do, and less
work will allow the algorithm to run faster”.

Meanwhile, Kapi, Sunar and Zamri [33] also announce
A* algorithm to be the “most prominent pathfinding
algorithm”, applied to “grid maps” in video games, that has
“dominated the field for decades”. The authors identify A*
algorithm to “outmatch” various contemporary algorithmic
designs, like that of Bee algorithm and Ant Colony
Optimization (ACO) within “complex environments”;
despite A* algorithm’s memory consumption being “three
times” worse on average. Although it is considered a
“classic pathfinding solution”, the authors remark that A*
algorithm is “still being implemented and benchmarked, and
it is further optimised in most of the current researches”.
Thus, extending its relevance to the investigation proposed
by this work.

Furthermore, also extending the favourability of A*
algorithm in maze solving applications, Barnouti, Al-
Dabbagh and Naser [38] to explore the application of A* for
the nature of strategy orientated video games. The authors

acknowledge A* algorithm to be a compound of a uniform-
cost search and a heuristic search, that is “widely used in
pathfinding and graph traversal” applications. The authors
continue to remark that A* does not only find a path
between a given source and destination but finds the
“shortest path quickly”. Concluding that A* is a very
capable search algorithm, whose overall performance is
“acceptable and able to find the shortest path between two
points”. As previously seen, they too refer to the algorithm
as the “most popular algorithm in pathfinding”, given its
successes.

Additionally, Rafiq, Kadir and Ihsan [39] recognise A*
algorithm to be “one of the most popular techniques used
for pathfinding” in video game development, given “its
accuracy and performance”. The authors reveal that the
algorithm has been applied in “several video game genres”,
such as real-time strategy games, role-playing games, racing
games, and turn-based strategy games, in the context of
NPC’s. They continue to reason its prominence in the field,
due to its “simplicity”, for which is why it has and continues
to be “chosen by programmers to solve pathfinding
problems”; alongside what the authors acknowledge the A*
algorithm to have achieved, in finding the “minimum
solution by finding the shortest path” between any given
two nodes. The authors in support of their popularity
investigation, determine that A* algorithm between the
period of ‘2010 – 2018’ was the most “popular technique
applied to pathfinding in game development”, opposing
metaheuristic techniques such as Genetic Algorithms (GA)
and ACO, despite their “constant increase in usage as
pathfinding algorithms” and being deemed to be “better than
heuristic techniques”, in terms of “time and memory usage”.
However, the authors conclude from their investigations
that “improved A* algorithms” in fact return the “fastest
path in the shortest time”, overlooking the “better
performance” of metaheuristics overall. A few of many
existing variants of the A* algorithm that the authors declare
are: IDA* and Hybrid A*. Providing the space complexity
of the Pac-Man production proposed for our
experimentation, metaheuristic techniques are sought to be
excessive, for which the authors acknowledge to be
comparatively beneficial for more “complex maps”,
alternatively.

C. Jack Moorin

The pathfinding functionality of shortest path problem
solutions has applications within video games for artificially
controlled characters [58] but also within the decision-
making process behind classical AI planners when
considering potential rewards over a given planning horizon
which can potentially be mapped into a standard shortest
path problem and therein solved using a pathfinding
algorithm [59]. This is discussed within the 2015 paper
‘Classical Planning with Simulators: Results on the Atari
Video Games’ where Lipovetzky, Ramirez and Geffner
discuss the use of traditional pathfinding algorithms within
AI Planning. By formatting a given planning horizon as a
hypothetical weighted graph pathfinding algorithm can be
applied to find the optimum route, which in the case of AI
Planning is the combination of decisions resulting in the
“maximum possible reward”. Within this application, the
authors consider Dijkstra’s pathfinding algorithm for use in
this approach to optimally solve the ideal route. Whilst the
ability of the algorithm to always find the optimum route is
praised, they define it as being inefficient over large state

spaces as well as other blind search methods such as
Breadth-First Search and do not consider it for the purpose
of their AI Planner. This trade-off of performance in favour
of ability makes Dijkstra an interesting choice for an
algorithm implementation when regarding the application
of video games as though performance is often favoured due
to their real-time nature, it could be used as a benchmark by
other faster algorithms such as A*.

The 2011 paper ‘A*-based Pathfinding in Modern
Computer Games’ by X Cui and H Shi also finds fault with
the application of Dijkstra’s algorithm, stating that it was
“soon overwhelmed by the sheer exponential growth in the
complexity of the game” [60] and provides numerous
suggestions of algorithms which vary upon the structure of
A* as potential replacements. While this of course does
again report on the inefficiency of Dijkstra’s algorithm in
the face of largely more complex graphs, the paper
considers notably more recent and highly complex games as
being the source of the need for algorithms better suited to
them. While Dijkstra’s algorithm has now been left behind
in the face of the requirements of recent games with more
complex graphs, Dijkstra was used initially within earlier
games to great effect despite being rendered obsolete over
time. When considering the comparatively low complexity
of the unweighted graph within the discussed Pac-Man
game, Dijkstra could perhaps operate as efficiently as the
other implemented algorithms and otherwise provide a
useful comparison between algorithms such as the often
more efficient but less optimal A* and those that always
output the optimum route between nodes but are faced with
the problem of becoming drastically slower in the face of
growing complexity.

Despite the previous paper’s dismissal of the use of
Dijkstra’s algorithm when pathfinding over larger weighted
graph, in the 2018 paper ‘Comparative Analysis of
Pathfinding Algorithms A*, Dijkstra, and BFS on Maze
Runner Game’, the authors Permana, Bintoro, Arifitama
and Syahputra find Dijkstra’s algorithm to be conversely
optimal for pathfinding when being implemented upon an
unweighted graph structured as a two-dimensional grid, the
same configuration used within the Pac-Man game [61].
Within the paper the A*, BFS and Dijkstra algorithms are
implemented within a video game application and their
performance tested in finding a path from a given start node
to a target node after the space within the graph has been
obstructed with the addition of numerous obstacle blocks.
The performance of each algorithm is trailed against a series
of obstacle layouts, each further limiting the available space
within the graph. In direct contrast to the previously noted
inefficiency of Dijkstra’s algorithm in comparison to that of
A*, within the implementation of an unweighted graph as a
two-dimensional grid Dijkstra repeatedly outperforms both
the A* and BFS algorithms and is chosen by the authors in
the paper’s summary for implementation within the game.
This paper is of course highly advocating the use of the
Dijkstra algorithm and is especially practical for the
purposes of this study given the large similarity of the
authors application of the algorithm to the application
intended for those algorithms implemented within this
study.

Dijkstra’s algorithm conceived by Dutch computer
scientist Edsger W. Dijkstra in 1956 and first published by
him in the paper ‘A Note on Two Problems in Connexion

with Graphs’ [62] three years later in 1959 is an algorithm
commonly used to solve the shortest path problem [63].
Originally the algorithm only discovered the optimal path
between the start and target nodes within a graph however,
the more commonly used variant of the algorithm today, and
also the variant implemented within the Pac-Man variant,
defines a shortest path tree for a given source node by
finding the shortest path between that node and every other
within the graph [64].

In the 2001 paper ‘The PN*-search algorithm:
Application to tsume-shogi’ [65], Seo, Iida and Uiterwijk
propose the use of a new proof-number (PN) search
algorithm, PN*, for application within a computerized
version of the Japanese ‘Shogi miniature problem’, ‘Tsume-
Shogi’ in which players attempt to ‘checkmate’ their
opponents king within a given Shogi board layout, similar
to the western equivalent of a chess problem. The proposed
PN* algorithm attempts to improve upon the performance
of already existing PN algorithms, namely the Breadth-First
variant of the PN-Search by using “methods such as
recursive iterative deepening, dynamic evaluation, efficient
successor ordering, and pruning by dependency relations”,
which transforms the approach of the algorithm into that of
an iterative-deepening depth-first search. The ‘Tsume-
Shogi’ problem, similar to the previously discussed Maze
Runner Game, has many parallels with the pathfinding
problem within the proposed Pac-Man game. Both
problems are applied within two-dimensional grid graph
structures and consider the optimal movement of an entity
within the graph. This paper of course advocates the use of
the developed PN* algorithm and its iteratively deepening
depth-first structure within the ‘Tsume-Shogi’ problem and
creates considerable favour for the idea of the
implementation of a similar algorithm within the study
documented by this paper.

D. Arpit Sharma

For the task of finding the shortest path from the Pac-
Man’s current location to the closest coin, several
algorithms were considered based on the criteria described
in the above section. Bidirectional Breadth-First Search
algorithm and Bidirectional Dijkstra algorithm were given
priority because of the desirable characteristics they
possessed discussed in detail in this section.

The BFS algorithm was invented in 1945 by Konrad
Zuse. One of its reinventors, Edward F. Moore, redesigned
it in 1959 for finding the shortest path in a maze [54], which
is the very same problem, that is being tested in the
experiment. It is still one of the classic algorithms used for
the problem of maze solving.

For the game used in the experiment, as all the nodes
have an equal weight of a single unit, the grid can be
considered as an unweighted graph as the cheapest path is
always the shortest one. BFS is a suitable for unweighted
graphs. As the next closest coin can be in any direction, an
undirected search was needed and because the Breadth-First
Search ‘works on both undirected and directed graphs’ [56],
it was preferred. The algorithm searches in all directions and
terminates exploration once it finds the target.

The time complexity is very crucial for video games as
it amounts to undesirable lags as it determines, how much
‘time the program will take’ [58] to compile. If the
computation time for path planning is high, it will slow

down the game and affect its playability. The time
complexity of the unidirectional Breadth-First Search in big

‘O’ notation is 𝑂(𝑏𝑑), where ‘b’ and ‘d’ are described in the
previous section. To decrease the time complexity, to make
the algorithm quicker, a bidirectional Breadth-First Search
algorithm was preferred as it has a much lesser time

complexity of just 𝑂(𝑏𝑑/2). The reason is that instead of

just searching from a single starting node, the search begins
from the target node as well, at the same time. The
termination condition is met, whenever both the searches
have traversed any common node in the graph-tree.

The space complexity of the algorithm is proportional to
the ‘storage the program will take’ [58] while pathfinding as
it is the number of nodes, the algorithm must traverse to find
the shortest path from starting node to the target. Using the
similar notation as used above, the space complexity of the

unidirectional Breadth-First Search is 𝑂(𝑏𝑑). On the other
hand, the bidirectional Breadth-First Search algorithm has

the space complexity of just 𝑂(𝑏𝑑/2) as the search begins

from both the starting node and the destination node, the
graph is explored to a much lesser extent than it would be if
the search had begun from a single end.

Algorithm completeness is one of the most important
characteristics of an algorithm when it comes to video
games. Within the application of video games, it its
generally more important for a solution to always be found,
no matter the incurred overhead than to use a less complex
method with a lower chance of ultimately finding it. Since,
it explores the nodes layer by layer, space and time
complexity offered by the algorithm is considerable, but it
guarantees to find the target node even in an infinite graph.
Although, generally, the graph generated by the algorithm
while path planning is finite because of the very limited and
fixed size of the maze, but even if it had been more complex,
it would still eventually find the target. Therefore, the
Breadth-First Search is a complete search unlike the Depth-
First search, which sometimes gets trapped inside part of the
graph away from the goal and never returns [55]. It makes
it a good shortest path searching algorithm. The bi-
directional variant is also a complete search and guarantees
the solution.

Since, it had been found out at this stage that the
bidirectional Breadth-First Search algorithm is good for
making optimum paths, and for video games in general,
another algorithm to consider for making a bidirectional
variant of, was the classic Dijkstra for the experiment as its
very similar to Breadth-First Search in working as it also
explores the entire area while searching, because of which
its bidirectional variant is also a ‘complete’ algorithm.
Although, its bidirectional variant can be quicker at times,
but is not always guaranteed to return the shortest path
unlike the typical bidirectional BFS. The reason is that the
algorithm may terminate on a common node leaving the
alternative, more optimal node at times.

However, its longest possible path can still be a lot
shorter than the possibility of sub-optimal path calculated
by the Bidirectional Depth-First Search algorithm.
Although the results expected from this algorithm are not
always optimal, it can still be a competitive algorithm for
the pool of algorithms selected for this experiment and for
future studies regarding the optimization of the algorithms.

The algorithm works by ‘dividing two graph matrix’
[57] and then conducting independent searches. The results
are combined at the instance, the algorithms search space
intersects. Both the units use the ‘shared memory’ in the
program being run.

The IDA* from the A* algorithms which have been
proven algorithms in the gaming world as discussed in the
above sections, have been ‘derived’ [59] from Dijkstra,
making its bidirectional variant, Bidirectional Dijkstra,
alongside Bidirectional Breadth-First Search, one of the
classic candidates to be preferred for the experiments
involving video games.

IV. SOLUTION DESIGN

A. Common

Following the decision to implement numerous
pathfinding algorithms within the Pac-Man variant, the
requirements of accurately testing and trialling each of the
implemented algorithms to compile results reliable enough
to inform further observations regarding their suitability for
use in the shortest path problem becomes a notably large
undertaking and threatens to push the time constraints of the
study. Fortunately, the entirely digital format of the
proposed Pac-Man game and the full automation of the Pac-
Man character within the game following an algorithms
implementation, creates the possibility of extending Pac-
Man’s automation to cover not juts collecting every coin
node within the maze environment but also with regard to
its own testing and compilation of results regarding the
overall performance of each of the implemented algorithms.
Considering the definition of a new maze environment and
repositioning of Pac-Man within the level, following the
resetting of a level encountered within the original Pac-Man
game due to the player either having successfully completed
the previous level or having fallen victim to one of the non-
player character ghost enemies within the grid, a potential
aim for the Pac-Man variant implementation would be to
include this functionality within the implementation of Pac-
Man using an implemented pathfinding algorithm. By being
able to correctly reset the environment and position Pac-
Man at a new starting position with the implemented
variant, enables the repeated resetting of the maze
environment and repositioning of Pac-Man required to
implement an iterative testing architecture of each
algorithm’s performance with Pac-Man being positioned at
each of the possible starting points within the grid. This
would allow the testing of each algorithm to not only be
carried out entirely autonomously without the need for
oversight or involvement by those working on the project
but also dramatically increase the amount of result data able
to be compiled during the study as if correctly implemented,
iterative testing functionality would enable the Pac-Man
variant to trial and compile results regarding each
algorithms performance considerably faster and more
efficiently than if the testing process were completed by
hand. Increasing the number of results compiled during the
testing process further increases the validity of the results
collected and of any observations made following their
compilation and analysis as the repeated carrying out of
trials remains a commonly used practice within all fields of
study regarding testing processes caried out where the
outcome of the test is unknown to the person or people
completing them. Repeating trials allows them to confirm
the accuracy of their tests as any results that were affected

by one or more external factors changing the outcome of the
test would become more apparent when considered in
combination with other tests not affected in the same way as
the erroneous results would not fit the established trend.

Typically, within the scientific field, tests are repeated a
minimum of three times to ensure their accuracy. For the
purposes of this study, provided none of the implemented
algorithms are in any way stochastic and implement an
entirely deterministic approach to generating a path between
the provided start and target nodes, repeatedly trialling the
performance of an algorithm with Pac-Man beginning at the
same starting position is unnecessary as provided conditions
remain the same between tests, the same path will be
generated by the algorithm with little to no variance between
the time taken to compute the result. Therefore, instead of
wasting time doing this the Pac-Man variant when
determining the performance of each algorithm at collecting
every coin node within the graph, any autonomous testing
functionality should instead trial the algorithms
performance with Pac-Man beginning at each of the
potential starting positions within the graph to ensure the
algorithms performance is tested over a variety of graph
configurations.

With the aim of further extending the suggested iterative
testing functionality, a further improvement would be for
Pac-Man to trial each of the implemented algorithms in
sequence, allowing for the creation and compilation of
results for all of the algorithms in one go. Implementing
testing in this way would make the process entirely
autonomous and provide the easiest and most efficient
solution to reduce the overall time spent compiling results
on each algorithms performance.

B. Adam Hubble

Proceeding from the review of the literature studied, and
relevant to the algorithms elected for the individual
contribution to the investigation proposed, A* algorithm
and its bidirectional counterpart, Bidirectional A*, were
selected in correspondence with the general findings of
heuristic searchers being optimal within simpler
environments; similar to that of the structural arrangement
that Pac-Man engages. As not explicitly referred to within
the review conducted, Bidirectional A* was also elected as
one of many suggested, improved variants of A*, given its
offering for space and time complexity reduction [42],
despite its minimalistic advancement from the original,
unidirectional implementation.

As revealed by the series of works submitted to the field
of pathfinding, specifically for video game productions, the
A* algorithm undoubtedly remains to be regarded as one of
the most popular and provably optimal search algorithms in
contemporary research, regardless of it being defined as a
classic appeal to graph traversal optimisation. Its application
within the Pac-Man game was sought optimal, providing its
best-first search capability according to heuristic evaluation,
for exploiting the most promising nodes in the grid, to reach
a specified goal node. For which as previously realised, A*
is competent in guaranteeing the optimal shortest path, as
recognised as a complete search algorithm, assuming that
the heuristic is of an admissible measure.

In continued mention of heuristics, supporting the
relevant authors claims regarding the performance
variability of the algorithm when using different heuristic

functions, it is sensible to further propose the
implementation of multiple, commonly used heuristic
methods, to satisfy the comparability of the investigation.
Given that the A* algorithms bidirectional variant utilises
heuristic capabilities also, heightens the uncertainty of
outcomes produced by the experiments led, in concentration
of the iterative benchmark projected for purpose.

C. Jack Moorin

Following the review of the papers discovered relevant
to the study in the previous section of the report, the
algorithms chosen to be implemented for the individual
contribution to the project were the Dijkstra and Iterative
Deepening Depth-First Search algorithms. Of the two
potential variants of Dijkstra, the variant used to create a
shortest path tree, using Pac-Man’s position as the source
node.

As discovered from the literature review, Dijkstra’s
algorithm is known for being notably less efficient than
other pathfinding algorithms, especially when implemented
across highly complex graph structures, however, given the
simplicity of the maze environment within the Pac-Man
game as a relatively small and unweighted graph, Dijkstra
could potentially perform outperform other algorithms
known for being more efficient, due to the fact that it will
always output an optimal path to a target node which could
result in Pac-Man collecting every coin node within the
graph faster.

Unlike Dijkstra, IDDFS does not always output the
optimum path however, it is expected to perform more
efficiently than Dijkstra as it is notably less complex. This
will make for an interesting comparison between the two
within the study as one approach favours performance while
the other favours efficiency.

D. Arpit Sharma

After conducting the review of the papers mentioned in
the previous section, looking out for the desired
characteristic for the shortest pathfinding algorithm for the
problem being used in the experiment, an unweighted two-
dimensional maze, where the search had to be undirected as
the direction of the goal is unknown, Bidirectional Breadth-
First Search algorithm and Bidirectional Dijkstra algorithm
were finalized. The algorithms were used to plan the path
for Pac-Man to get to the next closest coin, in the game.

Based on the paper reviewed, the Bidirectional Breadth-
First Search algorithm is thought to be one of the most
efficient and promising algorithms based on its space and
time complexity and algorithm completeness. Also, found
from the papers was that the bi-directional BFS algorithm
was originally implemented for maze solving by one of its
reinventors, making it an eligible algorithm for the
experiment. Most importantly it always guarantees the
shortest path, which is one of the main goals of the
experiment.

But the second chosen algorithm, Bidirectional Dijkstra
is not expected to yield as good results as the first algorithm
as it does not always promise the shortest path. However, in
terms of algorithm completeness, it is found to be as
promising as the previous algorithm, which is very
important to prevent glitches in video games.

V. SOLUTION IMPLEMENTATION

A. Common

Following the decision to implement the trialled
algorithms within the maze environment of the popular Pac-
Man game, a variant of the game was implemented using
the chosen programming language, Python [47], and the
Visual Studio [48] integrated-development environment.
The implementation of our Pac-Man variant, of course
borrowed heavily from its’s predecessor, with respect to
both the mechanics of the original; a player-controlled
character: Pac-Man, is directed through a grid-based maze
environment with the aim of collecting as many of the
power pellets spread throughout the maze as possible whilst
also avoiding the multiple ghost enemies also in the maze,
and visually: with the assets created for and used in our
variant being either heavily inspired by or taken directly
from the original game. For the purposes of our study,
further added to this base implementation of the game was
functionality enabling the user to select from a list of
defined pathfinding algorithms, an algorithm to be used by
an entirely computationally controlled instance of Pac-Man,
to traverse the maze environment and collect each power
pellet. To further enable the testing and result compilation
necessary of each defined algorithm, iterative testing
functionality was implemented enabling repeated trialling
of either a specific algorithm or each algorithm in sequence
with the total time taken for Pac-Man to entirely traverse the
environment and the number of nodes it traversed trialled
and output to a file for each possible starting point within
the maze.

Figure 1: Graphical visualization of the Pac-Man game variant,

implemented for the purposes of this study. The figure illustrates

Pac-Man using the Depth-First Search algorithm to find a path

between itself and each of the coin collectibles within the maze.

For the purpose of ease, the pygame [49] python library
was used in development of the Pac-Man variant. Designed
bespoke for the purpose of the creation of video game
applications, the pygame library provided functionality for
the creation of the creation of the game screen window and
the drawing of the game’s graphics to it as well as
processing of the keyboard input events used to control the
game. Use of the pygame library enabled the creation of the

Pac-Man variant in a notably shorter amount of time than
would have otherwise been possible and therefore meant
that more time was able to be dedicated to the development
and trialling of each algorithm.

The creation of the graphical assets used in the Pac-Man
variant not available online, was handled using the Piskel
online sprite editor [50]. An entirely free, online, and open-
source application, Piskel enables the creation of static and
animated pixel art sprites and further exporting them to
various file types, enabling their use in other applications.
For the purposes of this project, Piskel was used in the
creation of the frames used in the animation of the Pac-Man
character and the four Non-Player Character ghost enemies.

To enable easy editing of the maze environment
navigated by Pac-Man during the game, the environment is
constructed from an external text file, walls.txt, which is
loaded into the application as its started and its contents used
to define the two-dimensional array used both for collision
detection by the Pac-Man character when traversing the map
and by the algorithms when determining a path through the
maze. The file itself contains a twenty-eight by thirty grid of
characters, each of which defines the purpose of its
respective cell within the maze. The character ‘C’ for
example denotes the corresponding cell of the maze
environment contains a coin, the misnomer by which our
own variant of the Pac-Man game refers to the power pellets
of the original, and when the game is loaded will cause a
coin to be created within the corresponding maze cell. Using
an external text file to define the maze environment used
within the game makes it easier to edit the game
environment as to change the purpose of a grid cell the
relevant character within the file must simply be changed to
refer to the desired purpose of the cell.

To assist in the implementation of the various
pathfinding algorithms used, a debug mode was
implemented, which when activated by pressing the ‘tab’
key, draws a two-dimensional grid onto the game
environment which can be used as a reference by the
programmers to easily work out the grid reference of any
cell in the maze. This is useful during implementation as the
algorithms can be set to output the paths they create or the
cells they check, in order for the programmer to understand
how the algorithm is attempting to search the grid. By
coupling this approach with the grid provided by the debug-
mode the programmers can easily visualise the search
process and will therefore have a better chance at
understanding the cause of any potential errors with the
algorithm.

Also implemented to assist in understanding how each
of the algorithms searches the grid is the drawing of Pac-
Man’s current path within the maze also drawn on top of the
game environment, so that it’s clearly visible the path the
algorithm has generated for Pac-Man to use in traversing the
maze. The maze cell containing the coin targeted by the
pathfinding algorithm has an overlaying red square drawn
on it and the cells making up Pac-Man’s path through the
maze have a blue overlaying square drawn on them. This
allows programmers to easily see if the implemented
algorithm is correctly finding the shortest path to the
targeted coin or if the generated path is taking some other
convoluted route erroneously and the algorithm’s
implementation needs to be checked.

Figure 2: Graphical visualization of the Pac-Man variant during

runtime, showcasing the debug mode implemented.

To ensure the comparability of the algorithms
implemented as part of this study, an implementation of the
Breadth-First Search algorithm without pathfinding
functionality is used to determine the coin node to be
targeted by the chosen pathfinding algorithm. This
implementation of using the BFS algorithm to determine the
target and then the pathfinding algorithm to determine Pac-
Man’s path is used for the testing of all of the pathfinding
algorithms despite the implementation of BFS with
pathfinding functionality as the first of the studied
algorithms as many of the other implemented pathfinding
algorithms such as Dijkstra do not contain their own search
functionality and require knowledge of the location of a
targeted node within the grid to inform the process of their
pathfinding. Therefore, despite the fact that both the
implemented BFS algorithm and the other studied algorithm
with search functionality, Depth-First Search, could both be
used to locate a coin node as well as determine a path
through the grid, the performance of these algorithms will
be comparable to those without search functionality as the
only varying factor will be the algorithm’s pathfinding
functionality.

The iterative testing functionality developed enables
either a chosen single pathfinding algorithm or each in
sequence to be repeatedly trialled and have its performance
results compiled and output to a file completely
autonomously. When trialled the selected pathfinding
algorithm will be used to navigate Pac-Man through the
maze environment, collecting each of the coins spread
throughout the grid. The performance of each algorithm is
trialled repeatedly with a total of two-hundred and eighty-
five tests being carried out per algorithm with Pac-Man
starting at each of the possible starting positions within the
maze. The total time taken for Pac-Man to collect every coin
and the number of nodes it traversed in doing so for each
trial is output to an external text file for the algorithm
currently being trialled. If all the algorithms are being tested
in sequence, the first algorithm to be implemented as part of
this study, Best-First Search, will be trialled initially and
once its trials are complete the next algorithm in the list will
be trialled until each of the algorithms has been tested.

Figure 3: Graphical visualization of the Pac-Man variant, at the

start of runtime. Illustrating the menu-environment of the

application where algorithms can be executed in isolation or

sequentially.

With respect to the contribution of each study member
to the implementation of the Pac-Man variant, it is worthy
to note that each member contributed equally to the
development of games initial state, the supporting
functionality discussed regarding debugging and iterative
testing, as well as the implementation of the relatively
simple Breadth and Depth-First Search algorithms, that
were rendered complete during the early development phase
of the project. Following the initial development, each
member had elected and subsequently implemented two
search or pathfinding algorithms, that each discovered to be
worthy for the investigation said, as reviewed within the
Solution Design section. The individual development of
each of these algorithms is detailed below, specific to each
member of the study.

B. Adam Hubble

A* – as the algorithm traverses through the graph or
grid-based map representation of the game’s environment,
resembling a maze, A* follows a path of the lowest known
cost (least distance travelled in the shortest time), whilst
maintaining a sorted, priority queue of alternate path nodes
along its route of traversal. At any given point in the
environment, if a node of the path currently being traversed
features a higher-cost (more expensive to route) than
another encountered (visited and known) node, the
algorithm sensibly abandons the higher-costing node and
instead, traverses the lower-costing node. This procedure
recurs until the traversing node becomes the goal node,
representing the destination of the path. Summarily, A*
conforms to a best-first search, which explores a graph by
expanding the most promising nodes according to cost that
is compiled using a heuristic evaluation function, denoted as
𝑓(𝑥), and finds the least-cost path from a given starting
node (the source) to a specified goal node (the destination).
The heuristic function it utilises, a “distance-plus-cost” [40]
evaluation method, purposes to determine the order in
which the search visits or explores nodes in the graph tree,

or respectively the grid. For which, the function is known to
be a summation of two subsidiary functions, denoted as:

𝑓(𝑥) = 𝑔(𝑛) + ℎ(𝑛)

 Where 𝑔(𝑛) represents the path-cost function,
representing the cost or actual distance from the starting
node to the current node of traversal. And ℎ(𝑛) represents
an admissible, heuristic estimate of the distance to the goal
node, from the current node of traversal; for a path to be
considered the least-cost path from start to goal, the
heuristic “must not overestimate the distance to the goal”.

 For the algorithm’s implementation, initially, given the
grid-based representation of the game’s environment, a two-
dimensional array representing its structural arrangement is
instantiated, to distinguish between the positions of nodes
occupied by obstacles and nodes that are traversable by the
Pac-Man avatar. Given the uniformity of the traversable
cells in the original production, the grid adopts the
schematic of an unweighted and undirected graph, where
nodes comprising the map are binarily classified as the
values of ‘1’, representing the occupation of obstacles, and
‘0’ representing their absence; this is iteratively addressed
by a ‘for-loop’ statement. In knowing of this configuration,
the path-cost of the algorithm can simply be acknowledged
as a representative of the number of nodes that it is
comprised of. Meanwhile, the start and goal nodes of each
path are instantiated to be relative to the position of Pac-
Man in the grid, at the time of path computation, and the
position of the goal also; both the start and goal nodes
configured for every path compiled are bound by a class,
namely ‘Node’, for which they are objects of. Abstracting
the properties of each node comprising the algorithms
procedure, was sought beneficial for maintaining the
robustness of the codebase and for ensuring cost evaluations
are performed accurately, where each node as an object of
the class, has an associated position, parent node, path-cost
(𝑔), heuristic estimate (ℎ) and final cost (𝑓) value. In
continued mention of the class, therein features two magic
methods [41], otherwise known as Dunder (double
underscore) methods, that are unique to the python
programming language, and enable comparison-wise
statements to be autonomously invocated for efficiency
practises; thus, allowing the theoretical nature of the
algorithms procedure to be better realised, from an
enhanced prospect of simplicity. To note, the ‘Node’ class
is also borrowed by the bidirectional variant of A* proposed
and would also be compatible with other heuristic-driven
algorithms, in future works.

 Preceding the algorithmic operation of A*, the
algorithms priority queue variables are instantiated, as a set
of open and closed lists of nodes, each represented by an
empty array variable initially, representative of the list of
“nodes that are children of already expanded nodes, but
have not been expanded themselves, yet” [37], and the list
of “nodes that have already been processed”. Where at each
step of the procedure, the node with the lowest cost 𝑓(𝑥) is
removed from the priority queue or open list, becoming the
current node of traversal; the 𝑓(𝑛) and 𝑔(𝑛) values of the
current node’s neighbours are then updated, before they are
appended to the queue for processing in the next iteration.
This sequence of operations continues to recur until the node

removed from the queue is the goal node, which can be
identified by the least cost and 𝑓 value compared to any
other node in the queue; subsequently, the 𝑓 value of the
node traversed is then also acknowledged as the cost of the
shortest path, given that its ℎ value in an admissible
heuristic, would equate to the value of zero (no distance to
the goal from the current node).

 To orchestrate this scheme, initially, the start node of
Pac-Man’s path is appended to the open list, for
neighbourhood processing. In achievement of the
algorithms recursive state, a ‘while-loop’ declaration is then
placed and conditioned by the open list, for which continues
to iterate the procedure until no nodes are contained by the
list, such that the length of the list equates to zero. Therein,
for each cycle of the procedure, the nodes comprising the
queue are sorted by ascending order relative to their 𝑓
values, where the node with the least cost surfaces to the top
of the queue; this capability is addressed by the language-
provided ‘sort’ method in compliance with the ‘Node’
class’s iterative operator, contained by its ‘__it__’ Dunder
method. Proceeding from the sorting process, the current
node is then assigned to the properties of the least-cost node
in the open list, before the least-cost node is then removed
from the open list and oppositely appended to the closed
one; this serves to identify the current node as processed, for
which prevents its cost being calculated multiple times.

 Prematurely, the position of the current node is then
compared via ‘if-else’ statement, with the position of the
goal node, for reducing the potential time complexity of the
algorithm; if the condition presents to be ‘true’, the path
from the start node to the goal node is thus known and can
be constructed for Pac-Man’s traversal operation(s). For the
path’s generation, an empty array variable is instantiated
(the path), where within a subsidiary ‘while-loop’
declaration, the positions of the parents of the current node
traversed can be appended to it; through backtracking, the
algorithm is orderly able to construct the path traversed,
from the goal node to the start node. Upon its compilation,
the start node is then appended to the path, as not already
considered, before the order of the path is then inversed to
accommodate for the reversed cycling of its generation.
Resultingly, a fully-connected path is processed and
returned by the containing method, namely ‘AStarSearch’,
which terminates the procedure and preserves operational
time (reduced time complexity) by ignoring further
statements in the corresponding method.

 However, if the condition presents to be ‘false’, such
that the current node traversed is not the goal node, then
alternatively a series of directions representative of
neighbouring nodes are populated in an array variable,
relative to the current node’s adjacencies, for which can
only be of up to four directions: up, down, left, and right.
Each neighbouring node’s position is simply calculated via
an addition operation, that sums the current nodes positional
values with those of each potential direction calculated; this
is orchestrated by a ‘for-loop’, that iterates through each
potential direction representing the location of a
neighbouring node in the grid, as contained within the
corresponding array variable. For each neighbouring node,
assuming its calculated position exists within the boundaries
of the grid, and its value within the grid does not resemble
an obstacle ‘1’, thus meaning that the node is traversable, as
well as the node not existing in the closed list already (its

cost has not been calculated previously), then aligned with
the active heuristic estimation metric, the neighbouring
nodes ℎ value is calculated. This is achieved via invocating
the heuristic evaluation method, that is configured with four
popular distance measures (discussed later). Beyond the
neighbouring nodes cost being registered, then for all nodes
contained in the open list, if the neighbouring node is
uniquely positioned in the grid and its cost is less expensive
than any of the contained nodes, it is then appended to the
queue. Upon being appended, in the following iteration of
the procedure the node will be considered for expansion, in
finding the shortest path between the start node and the goal
node specified. All the above-mentioned conditions are
addressed by a series of nested ‘if-else’ statements,
accompanied by a Boolean state, for adhering to simplicity.

Figure 4: Graphical visualization of the path expansion and

deduction phases, of the A* algorithm. Relative to environment

of the Pac-Man game.

Bidirectional A* – as opposed to searching from the start
node to the goal node directly, A* algorithms bidirectional
variant enables two searches to be conducted in parallel.
Such that one of which searches originates from the start
node whilst the other originates from the goal node; the most
“ideal state is that two search programs will meet in the
middle, then the time is only half of their original cost” [42].
However, if the conditions modelling the searches
intersection detection is “bad”, it is possible that the “search
time can be doubled”, alternatively. Operationally,
bidirectional search’s purpose to narrow the expansion of
nodes in a graph tree, which typically enlarges over the
course of a unidirectional search.

For its implementation, as an arguably simplistic variant
of A*, the adaptation can adopt all functionality declared
prior for the algorithmic procedure of A*. Differently, the
path expansion and deduction schemes of the algorithm are
abstracted into distinct methods, to appropriate the re-use of
the available functionality, for effectively addressing the
“forward and backward” modes of search that the algorithm
simultaneously entertains. For which, two declarations of
start nodes, goal nodes, open lists and closed lists also exist,
to cater for the algorithm’s polarity, that consequently
redefines the condition of the algorithms recursive state, as
the procedure instead recurs until both instances of open list
contain no nodes to be expanded; unless a node is common
to both searches, thus there being a point of intersection.
Unlike Unidirectional A*, the termination condition of
Bidirectional A* not only accounts for when each search
reaches its target, formerly as the goal node, but when two
searches intersect such that they “meet at the same node”
[43].

Upon one of three components of the termination
condition being satisfied, the paths generated by each mode
of search up until the point of intersection, or the goal
node(s) alternatively, is deduced from the all the nodes

visited by the algorithm. Identical to the A* algorithm, an
empty array variable is instantiated for each search (the
paths), where within a subsequent ‘while-loop’ declaration,
the positions of the parents of the current node traversed can
be appended to it. Through backtracking, the algorithm is
able to construct two paths, from either search’s start node
to its corresponding goal node, or to the node at which the
searches intersect. Proceeding from either path’s
population, and in the company of a series of conditional
and iterative statements, all nodes comprising either
searches path that defer from the common pathing focus or
in case of error, that surpass the point of intersection, are
removed from consideration to ensure that the least-cost
path is found. In which both paths can then be merged, to
find the shortest path between the common start and goal
node of the search; here, the start nodes of each search
operation are appended, if not already concerned in the path
compiled.

Oppositely, if none of three termination conditions are
satisfied, alike Unidirectional A*, Bidirectional A* then
continues to compile a series of promising neighbouring
nodes, via invocating the relevant path expansion method
for each mode of search, until the termination condition is
eventually fulfilled. Thus, Bidirectional A* also guarantees
that a path is generated but its optimality is questionable,
considering that it “does not guarantee the route found to be
optimal, if the search ends when the forward and backward
search meet in the middle” [44].

Figure 5: Graphical visualization of the path expansion and

deduction phases, of the Bidirectional variant of the A*

algorithm. Relative to environment of the Pac-Man game.

Heuristic Evaluation – as informed search algorithms
and thereby users of heuristic functions, A* and its
bidirectional counterpart can find the shortest path through
a search space, using a series of heuristic methods purposed
for estimating how close an agent (Pac-Man) is to the
specified goal; that in return, determines the order in which
the search visits nodes in the grid. Notably, it must be
acknowledged that the “time complexity of A* depends on
the heuristic” [40] active in its search.

For comparative sake, the application features four well-
known heuristic functions for grid-based representations of
maps; this was sought to be useful for investigating the
resultant behaviours of Pac-Man, specifically for realising a
supposed trade-off between speed and accuracy. The
heuristic functions sponsored by the work submitted are
Manhattan, Euclidean, Octile and Chebyshev-type
distances, each of which methods propose a unique set of
operations, optimal for separate environmental conditions
and traversal capabilities of agents. For simplicity, all
heuristic methods are conditioned by a series of ‘if-else’
statements, bound by one method, namely ‘Heuristic’,
where either heuristic calculation can be invocated relative
to a string variable that is ‘passed-by-value’. For their

implementation, a series of math-related expressions are
simply replicated [45].

Purposed for reducing the relative space and time
complexities of each algorithm proposed by the
experimentation presented, Manhattan distance claims a
presence in each of the relevant methods, as a “good
heuristic” for when a grid only allows horizontal and
vertical movement. With the support of an ‘if-else’
statement, rather than invocating the procedures of the
algorithms featured, when the start node is adjacent to the
goal node, Manhattan distance is used to determine whether
a path containing the start and goal nodes only, should be
compiled instantaneously; this is satisfied upon the distance
between said nodes being estimated to the value of one. Also
recognised as city block distance, a distance value of one
infers that the distance between the start and goal nodes is
estimated to be one cell relative to the grid, thus, meaning
that the nodes form an adjacency and can further be
traversed too directly. This mechanism although not
officially recognised within the field, enhances the fluidity
of Pac-Man’s traversal, without deferring from the original
implementations of either algorithm supported by the study.

C. Jack Moorin

Dijkstra – requires that the shortest path between the
starting node and each of the other traversable nodes within
the graph is discovered to ensure the path between the start
and target node is the shortest possible. On the basis that the
graph used for our implementation of the Pac-Man game,
the maze environment defined as a two-dimensional grid
within the code, is an unweighted graph the distance of the
shortest path between Pac-Man’s starting point and the
target node can be referred to as the number of nodes
traversed by the path between the two. To hold this distance
for each node a two-dimensional array is defined that is the
same size as the array used to define the maze environment.
The start node’s distance is set to zero as it is already the
node that the search will begin at and added as the first item
in a queue. This queue is then iterated through with each
iteration adding the traversable nodes neighbouring the
currently iterated node to the list and setting their distance
to be one higher than that of the currently iterated node as
the neighbouring node is only a single traversal away from
it.

Once the list has been fully iterated every traversable
node within the graph will have had a distance assigned
equal to the minimum number of nodes that need to be
traversed in order to reach it. By using these distances, it is
possible to work backwards from the node of the targeted
coin in order to find the shortest path to it from the starting
node. A second queue is defined to hold the discovered path
and the target node set as the first element. Looping until the
target node has been set to the position of the start node, the
first of the nodes neighbouring the current target node to be
checked that has a distance value one less than that of the
target node is appended to the path and becomes the new
target node. This looped process will continue until the start
node has been reached and which point the path queue will
contain the shortest path between the target and the start
nodes. Once it has been reversed it will then provide Pac-
Man with the path from its current node to the target node.

Figure 6: Graphical visualization of the path expansion and

deduction phases, of Dijkstra’s algorithm. Relative to

environment of the Pac-Man game.

Iterative Deepening Depth-First Search – makes use of
two functions in order to handle the recursive nature of the
algorithm. The algorithm’s ‘root’ is the contents of the
‘IDDFSearch’ function and is used to repeatedly call the
second function, ‘DLS’, which performs the actual depth
limited search functionality of the algorithm, with
incrementally greater provided search depth until the search
has discovered the target node. The ‘DLS’ function is
defined as an ‘inner function’ within the ‘IDDFSearch’
function as the ‘DLS’ function needs access to the path list
defined within the enclosing ‘IDDFSearch’ function. Before
defining the inner ‘DLS’ function, the ‘IDDFSearch’
function defines the aforementioned path list as well as a,
currently empty, list of nodes that have been already
checked during the search process to avoid the algorithm
repeating over itself. As the ‘DLS’ function can call itself
recursively potentially multiple times, it is necessary for
these to be defined outside of the function, so they are not
overwritten following each execution of the function.

The ‘DLS’ function takes in the parameters of the node
to be searched next and the remaining depth left of the
search. If the remaining depth is zero, the provided node is
checked and if it is the target node returns it. If it not the
target node however, the ‘None’ keyword is returned
indicating that the target node was not found. If the
remaining search depth is greater than zero, the ‘DLS’
function recursively calls itself upon the nodes
neighbouring the provided node with one less search depth
than was input to the current instance of the function. This
recursive calling of the function is what gives the function
its depth-first structure as, with sufficient search depths, the
search function will be called on the start nodes first
neighbour, which will then call the function on its first
neighbour and so on. If the function returns here with the
keyword ‘None’ then the completed search was
unsuccessful, and the search algorithm is then called on the
next neighbouring node. If a node index is returned
however, then the search was successful, the current
neighbouring node is appended to the path and is returned
by the function. When the instance of the function called
within the ‘IDDFSearch’ ‘root’ returns the search with the
current search depth has been completed. If this instance of
the function returns a node index, then the target node must
have been found and the start node is appended to the path
as its final node. If the ‘None’ keyword has been returned
however then the current iteration of the search must not
have been successful, the search depth is incremented by
one and the search algorithm called again on the start node.

D. Arpit Sharma

Bidirectional Breadth-First Search – the algorithm has
been implemented to find the shortest path between the
starting node and the destination node in an unweighted

grid, implying that the shortest path in length between then
nodes is also the optimum. Two units of unidirectional
Breadth-first algorithm have been used as subparts and are
run simultaneously, from both the starting node (Pac-Man’s
location) and the target (next closest coin location) towards
each other.

The ordinary Breadth-first algorithm uses the graph
theory for path planning by exploring the nodes in a layer-
by-layer fashion. The algorithm starts at the root node and
explores all the adjacent nodes. Then, for each adjacent
node, it explores its neighbouring nodes one by one untill it
reaches the target. It uses a First in First Out, ‘FIFO queue’
[51] for the nodes in the graph obtained by expanding their
parent nodes. The unexplored or unvisited nodes are kept in
a linked list or queue called ‘open’ and after being visited
are placed in the ‘closed’ queue. The code contains two
methods for the two phases to perform the path planning:
‘space exploration’, and ‘shortest path deduction’. Figure 6
shows the visualization of these phases, where blue cells are
the cells that have been explored till that point, and the
yellow line is the final shortest path calculated by the
algorithm.

In the space exploration phase, each unit performs its
blind search generating a graph tree by traversing through
the neighbouring nodes. At first, using the FIFO principal,
the first entered node is popped from the ‘open’ queue. Then
it explores all the unexplored neighbouring nodes (that is if
they are not inside the ‘closed’ queue), before they are then
appended to the open and closed queues. Next each branch
formed between the current and neighbouring node is added
to the graph tree array. The method returns the generated
graph tree. When the end of the graph tree is reached,
meaning that there are no more neighbouring nodes to
explore, the open queue starts emptying.

The above phase runs simultaneously for both units. The
exploration phase ends if any of the individual units explore
the graph tree fully or a common node explored by them is
found by checking the intersection of both closed queues,
and hence, the algorithm enters the phase of path deduction.

During the path deduction phase, the shortest path is
deducted by each unit one by one by traversing the
generated graph tree by moving in the opposite direction,
from the target node till the start node is reached.

The path calculated by the forward-moving BFS is
added to the reversed path returned by the reverse moving
BFS (to arrange the path in the proper sequence) and
returned as a complete shortest path needed for the Pac-Man
to traverse.

Figure 7: Graphical visualization of the path expansion and

deduction phases, of the Bidirectional variant of the Breadth-

First Search algorithm. Relative to environment of the Pac-Man

game.

Bidirectional Dijkstra – it also uses two units of the
ordinary Dijkstra’s algorithm that has been used in the
experiment as a complete algorithm, as a subpart, one for
beginning the search from starting node (the Pac-Man’s
current location) to the target node and the other unit for
searching from the target node to the Pac-Man, in parallel,
to find the shortest path between them.

For the implementation of each unit, the code is divided
into two phases, ‘space exploration’ and ‘path deduction’.
Figure 7 illustrates the visualization of these phases. As the
unidirectional Dijkstra uses ‘tentative distance’ for
calculating the distance from the current node to the
neighbouring nodes by slowly ‘relaxing’ [52] them as it
performs the exploration. So, initially, the tentative distance
of the current source is zero (as the distance of the current
node from itself is obviously, zero) and is added as the first
item to the priority queue. All the rest of the unexplored
nodes have a tentative distance of infinity at this stage.
Slowly the nodes are relaxed with the incremental increase
in one unit distance as the depth of the generated graph tree
increases, and as it is an unweighted graph (the single edge
distance, the distance between adjacent nodes is considered
equal to one unit). Each node in the graph tree has a tentative
distance attached to it which will simply be the minimum
number of nodes required to reach that node. The distance
belonging to a node will keep on updating recursively as
long as shorter distances to that node are found in the maze
environment during the exploration phase. A two-
dimensional array has been used to keep a record of these
distances (each node representing a cell in the maze
environment). The above phase runs simultaneously for
both the unidirectional units and the termination condition
is met even if any of them traverses the graph tree fully or if
they share a common explored node at any point.

Next comes the path deduction phase, during which,
each unit deduces the path from the graph tree, starting from
the target node, and selecting the neighbour from all the
neighbours with the lowest single edge distance from it
recursively till the start node is found. The phase runs for
both the units one by one, and the path returned by both units
is combined after reversing the path returned by the reverse
traversing unit to make their ends meet properly.

Finally, that complete path is reversed (because the
nodes were appended to the path oppositely during the
phase deduction phase) and is returned as the shortest path
that Pac-Man must traverse.

Figure 8: Graphical visualization of the path expansion and

deduction phases, of the Bidirectional variant of Dijkstra’s

algorithm. Relative to environment of the Pac-Man game.

VI. SOLUTION EVALUATION

A. Common

Proceeding from the implementation of each of the
algorithms studied, the iterative testing functionality

implemented for the Pac-Man variant, was utilised to
recursively exercise the performance of each algorithm and
compile each’s results in the format of an external text file
(extension .txt). These results were then transferred to a
spreadsheet file (extension .xlsx) for processing, where the
mean and standard deviation of the total nodes traversed
during each test iteration, and the total time taken by Pac-
Man to complete each of said tests, could then be calculated
for sensibly rendering conclusions.

The data compiled and representative of each algorithm
is conveniently compressed into the table featured beneath
this passage, which is then referred to, for evaluating each
algorithms performance relative to the Pac-Man production.

Shortest-Path
Algorithm

Nodes
Traversed
(Average)

Nodes
Traversed
(Standard
Deviation)

Compilation
Time

Average
(Seconds)

Compilation
Time

Standard
Deviation
(Seconds)

BFS 391.236 9.860 18.695 0.527

A*

(Manhattan)
391.899 10.665 18.928 0.705

A*

(Chebyshev)
391.924 10.665 19.136 0.605

Bidirectional BFS 391.236 9.860 19.140 1.298

A*

(Octile)
391.924 10.665 19.169 0.799

Bidirectional A*

(Octile)
402.528 11.817 19.214 0.694

A*

(Euclidean)
395.069 9.613 19.237 0.556

Dijkstra 391.236 9.860 19.257 0.774

Bidirectional A*

(Chebyshev)
397.045 12.075 19.280 0.675

Bidirectional A*

(Euclidean)
404.608 9.197 19.412 0.456

Bidirectional

Dijkstra
391.236 9.860 19.422 0.505

Bidirectional A*

(Manhattan)
403.097 10.537 19.554 1.180

IDDFS 404.847 18.020 19.656 0.996

DFS 641.243 89.806 31.834 4.837

Table 1: The results compiled for the testbed configured,

displaying the performance of each of the implemented

algorithms, ranked relative to the time of their operations and

cumulative path-cost incurred.

B. Adam Hubble

 Proceeding from the iterative nature of experimentation
led for this investigation, numerical results concerning the
number of nodes traversed by the Pac-Man avatar and the
computational time taken for Pac-Man to navigate all
traversable nodes in the grid, were compiled, for the number
of traversable nodes available. Which is representative of
the number of experimental runs executed (two-hundred-
and-eighty-eight), per algorithm constituting to the study.
Through applying concepts of statistical analysis to the self-
populated dataset, mean and standard deviation statistics
could be derived for better portraying a relative,
performance comparison between each algorithms
search(es).

 A* – in correspondence with the numerical results
displayed in Table 1, comparatively, the A* algorithm

proves to be somewhat optimal with the likes of the
Breadth-First Search algorithm. As is evidenced by A*
amassing an average of ‘391.899’ nodes traversed, with an
averaged compilation time of ’18.928’ seconds, compared
to BFS’s ‘391.236’ nodes traversed and compilation time of
’18.695’ seconds. Noticeably, the heuristic method applied
to the A* algorithm to achieve such result was Manhattan
distance, which as previously told to be a good heuristic for
grid-based maps, fulfils its expectations as being accurate
for the horizontal and vertical restraints of Pac-Man’s
traversal capability. Whereby, it is observed that the
Chebyshev, Octile and Euclidean distance metrics are
performatively degrading; given by their increased number
of nodes traversed and time taken for Pac-Man to attain all
coin collectibles, on average. However, the Chebyshev and
Octile variants yield a similar performance to the Manhattan
variant, respective of the Euclidean variant as
performatively being the worst. As does the bidirectional
variants of BFS and A* when the active heuristic method
concerns Octile distance. Although A* is regarded as being
the provably optimal algorithm across various applications,
as already explored, its suboptimality in path-cost when
relative to the BFS algorithm, can be considered a defect of
the heuristic function that it employs. Where acknowledged
prior, it is sometimes possible for the algorithm to
overestimate the actual path cost, for which the heuristic is
then not considered admissible, as the path returned may not
be representative of the shortest path possible. This may
occur due to the unweighted nature of the grid that Pac-Man
traverses through, providing that it would be possible for
every node to be calculated as being the same distance from
the goal.

 Moreover, relating to the deviation between each
experimental run of the algorithm, all heuristic variants of
the A* algorithm offer a degree of consistency in their
search, where unexpectedly, A* in use of the Euclidean
distance metric yields the smallest deviation in nodes
traversed ‘9.613’ (nodes) and compilation time ‘0.556’
(seconds) amassed, across all experimental runs. Generally,
it can be surveyed that the A* algorithm is somewhat
consistent by comparison to the other featured algorithms,
where only BFS and the bidirectional variants of Dijkstra’s
algorithm and A* are able to compete. Such that the A*
algorithm when using Euclidean distance, ranks fourth out
of all other algorithms and their variants. Inevitably, the
heuristic function being invocated appears to affect the
performance of the A* algorithm, as is evidenced by
commonality extracted from the results. That is heuristics
with higher rates of consistency within their search, cause
Pac-Man to traverse more sub-optimal paths, than the
heuristics that demonstrate less consistency.

 Providing the space complexity and unweighted nature
of the game’s environment, it is feasible that the A*
algorithm can be a sub-optimal solution, relative to
compilation time, due to the memory expense incurred from
heuristic calculations in a simple environment; for which
BFS can empower within, due to the lack of heuristic
involvement on its search. Despite the outcome presented,
the performance of the A* algorithm should not be
overlooked, as within more complex and vaster
environments, the algorithm claims its optimality, when
aligned within the literature reviewed. As well, on average,
A* shares the optimal path-cost of ‘391’ nodes traversed,

which assumes an equivalence with BFS and both variations
of Dijkstra’s algorithm, relative to their completeness.

 Bidirectional A* – in continued mention of Table 1, A*
algorithms bidirectional variant is seemingly non-optimal,
for which is one of the least-performing algorithms of the
study, ranking sixth (at best) and twelfth (at worst). As is
backed by the numerical results compiled, Bidirectional A*
when using the Octile distance heuristic, amasses an
average of ‘402.528’ nodes traversed and a compilation
time of ’19.214’ seconds, for enabling Pac-Man to obtain all
the coin collectibles in its environment. These scores are
comparatively higher to the likes of BFS, A* and Dijkstra’s
algorithm, as previously entertained. Once again, the
heuristic method active in the algorithms search vastly
affects its capability of rendering an optimal path, where
between each of the heuristic methods sponsored by the
investigation, the deviation in average nodes traversed
accumulates ‘7.563’ nodes. Evidentially, the deviation is
substantial when compared to results obtained for A*, that
only deviates between an average of ‘3.17’ nodes traversed;
hence, the performance of Bidirectional A* deviates twice
as much, on average, relative to the cost of the path
generated. Thus, the performance of Bidirectional A* is
sought unreliable and negligent to path optimisation, in the
context of our investigation.

 Unusually, the Octile variant of the algorithm is
performatively best, in which traverses fewer nodes on
average and within a shorter period; this behaviour is not
anticipated, when considering that the metric is regarded
optimal for diagonal-driven movements of agents. Where
inversely, the better expected heuristic: Manhattan distance,
is proven to be performatively worse instead, in terms of
average compilation time ‘19.554’ (seconds) and the
deviation ‘1.180’ (seconds) therein; thus, opposing all
expectations of outcome, that presents no correlation with
the performance of unidirectional A*. Immediately, given
the deviation amount announced, it is once again plausible
that the bidirectional variant of the A* algorithm too
experiences heuristic overestimation, thus returning paths
not considered admissible; this is sensible to assume,
providing that the paths of multiple searches are ideally
merged around the point of intersection. In which, with
reference to prior discussions regarding the algorithm’s
polarity, cost overestimation and performance degradation
generally, could be resultant of the intersection detection
conditions adequacy; that when the two search operations
do not connect central to the start node and goal node, the
searches non-ideally expand more nodes and incur memory
and time expenses before a point of intersection can be
detected. Hence, the search time has the potential of being
doubled, as revealed previously, where the path generated
can also be sub-optimal, relative to cost.

 Given this observation, it would be sensible to revise the
termination condition of the bidirectional variant of A*, in
attempt to yield performatively optimal results, as initially
anticipated from its implementation. Conclusively,
Bidirectional A* does not fulfil its expectations for choice
in the study but it is acknowledged useful, in less object-
dense areas of an environment, that Pac-Man, the game,
does not entertain.

C. Jack Moorin

Dijkstra – following the iterative testing of the
implemented Dijkstra’s algorithm within the Pac-Man

variant, the average and standard deviation of the nodes
traversed by Pac-Man during each test and its total time
taken were calculated along with the results for the other
algorithms. The Dijkstra algorithm enabled Pac-Man to
collect every coin node after traversing an average of
‘391.236’ nodes with a standard deviation of ‘9.859’. This
average value as well as the standard deviation of the values
was shared by the BFS algorithm as well as the bi-
directional implementations of both. When ranked against
the results of the other implemented algorithms these four
algorithms rank jointly in first place with the lowest number
of total nodes traversed. This can be attributed to the fact
that BFS, Dijkstra and their bidirectional implementations
always output the shortest path between the start and target
nodes, which is why their total nodes traversed are always
the same across the large amount of completed tests and
were also the lowest nodes traversed resulting from all the
implemented algorithms.

While the Dijkstra implementation does manage to
output the optimal path between the start and target nodes,
it is let down by its performance as the algorithm will always
find the shortest path between the starting node and every
other map in the graph, even if the targeted node is only a
short distance from the start, largely impacting the time
taken to compute the algorithm. The average time taken for
Pac-Man while using Dijkstra’s algorithm to collect every
coin node within the graph is ‘19.257’ seconds with a
standard deviation of ‘0.773’ seconds. When ranked this
places Dijkstra’s algorithm as the eighth fastest algorithm to
use despite the fact that it always generates the shortest path
for Pac-Man to traverse. It is worth noting that the BFS
algorithm, which also always finds the shortest path
between the nodes and is notably less complex, is ranked
first for the lowest amount of time taken to collect all the
coin nodes within the graph.

In consideration of the algorithm’s performance, even
though Dijkstra’s algorithm does manage to always find the
optimum path between the start and target nodes, in practice
its performance is hampered considerably by its own
complexity, resulting in it being ranked below other
algorithms that do not always generate the optimum path
between nodes in time taken to collect all the coin nodes as
they are able to make up for this by being less
computationally expensive to compute than Dijkstra.

Iterative Deepening Depth-First Search – conversely to
Dijkstra’s algorithm, IDDFS does not always output the
shortest path between nodes and is in fact ranked as the 13th
best algorithm for total nodes traversed (one from last) due
to the sub-optimal paths it creates, having an average of
‘404.847’ total nodes traversed per test, with a standard
deviation of ‘18.019’. The only algorithm in fact IDDFS
managed to outperform in total number of nodes traversed
is its non-depth limited Depth-First Search algorithm
counterpart, which has the anomalously high number of
total nodes traversed of ‘641.243’ with a standard deviation
of ‘89.805’. If this performance of the non-depth limited
variant of IDDFS is in fact considered to be anomalously
high and DFS removed from consideration as a pathfinding
algorithm IDDFS is the least successful of all the
implemented algorithms are finding the optimum path
between Pac-Man and the targeted node.

IDDFS is also ranked as 13th in the average time taken
to traverse the graph collecting all the coin nodes with an

overall average time of ‘19.655’ seconds and a standard
deviation of ‘0.996’ seconds. Depth-First Search is again the
lowest ranked algorithm due to its anomalously high
average time of ‘31.833’ seconds, with a standard deviation
of ‘0.996’ seconds. If the performance of DFS is again
considered to be anomalous here IDDFS becomes the
longest of all the algorithms to run as well as being the least
successful in finding the optimal path between the start and
target nodes.

In consideration of the algorithm’s overall performance
IDDFS was both the least successful algorithm in generating
an optimal path between the start and target nodes and took
the longest of all the algorithms to collect every coin node.
While the non-depth limited DFS algorithm performed even
worse than IDDFS, its own performance is so much worse
than that of the algorithms that it is considered to be
anomalous, leaving IDDFS as the worst of all the
algorithms.

D. Arpit Sharma

In this Pac-Man variant, the Pac-Man is supposed to
collect all the coins present in the environment, in as little
time and nodes traversed as possible. The movement of Pac-
Man instead of being manually controlled is handled by the
algorithm being tested. The test is run for each algorithm for
the number of empty cells in the maze with the Pac-Man
starting from each of them, iteratively. The time taken and
the nodes traversed on each iteration are stored in the
respective files of the algorithms being run, named after the
algorithm, and are stored in the results folder. This forms the
benchmark, made, and then used for the experiment.

Nodes traversed – both the implemented Bidirectional
BFS algorithm and the Bidirectional Dijkstra algorithm
tested to have on average traversed nodes to be 391.236 with
an equal standard deviation of fewer than 10 nodes. This
means that the Pac-Man treaded this number of nodes in the
maze to collect all coins, on average. This also happens to
be the lowest number of average nodes traversed in the
experiment, and the same results are shared by their
unidirectional variants as well. This can be said from the
results that these algorithms follow the shortest path, which
is one of the main aims of the experiment. Also, since their
respective unidirectional variants also gave exactly the same
results (both the average and the standard deviation), it
means there is no difference in the final path calculated by
the unidirectional and bidirectional variants. This reason is
supposed to be the fact that the unidirectional subparts of the
bidirectional variants explore many nodes before meeting
each other in the middle that there is no room for error left,
unlike bidirectional A* variants.

Time Taken to collect all coins – but the average time
taken for collecting all the coins for the bidirectional BFS
variant is 19.140 seconds, which is little more than taken by
the unidirectional BFS (18.695 seconds). Theoretically, it
was expected to be quicker than the unidirectional one as it
possesses much less space and time complexity, but the
results are an outcome of the reason that the coins in this
Pac-Man variant are adjacent to each other. Therefore, the
next closest coin, the Pacman must collect is often, very next
to it and sometimes they just have a single empty cell
between them. As the Bidirectional Breadth-First Search
explores the nodes layer by layer, from both the starting
node (Pac-Man’s position) and the target position (next
closest coin, lying very next to it), it ends up exploring four

nodes (two nodes per its each unidirectional unit) plus an
intersecting node checking (which in itself is an expensive
operation) to calculate the path, as compared to
unidirectional BFS, which just explores two nodes. Even
when there is an empty cell between the Pac-Man and the
coin to be collected (which happens very often), the
bidirectional variant must perform four nodes (two from
each end), and an intersection check. Although the
unidirectional BFS also must explore four nodes (two on
both sides), it does not have to perform any intersection
checking.

Hence, in these cases, the bidirectional variant expends
much more computational power and time as compared to
the unidirectional algorithm leading to poor performance in
terms of average time taken to collect all coins. The same
reason can be extended to explain the poor performance of
Bidirectional Dijkstra, at 19.422 seconds when compared to
its unidirectional equivalent, which is 0.165 seconds quicker
than it on an average. Therefore, the bidirectional variants
seem less efficient than their unidirectional variants when
the target is too close to the source.

 Algorithm completeness – it was seen whether the
algorithms get stuck in any of the iterations, meaning that
they traverse the part of the generated graph without the goal
and are unable to reach the goal. As expected, both the
algorithms did not glitch anytime proving that the
algorithms are ‘complete’ algorithms and hence, unfailingly
finds the target every time. It makes them suitable for
making glitch-free video games, the importance of which
has been discussed in earlier sections.

VII. CONCLUSION

A. Exercising Performance

 With respect to the benchmarks used to measure the
performance of the implemented algorithms, the total
number of nodes traversed by Pac-Man during a test
iteration is a good metric to use to compare and contrast the
ability of each of the algorithms to output the optimum path
between the provided nodes. For example, when analysing
the compiled results table, it can be easily deduced that the
DFS algorithm is considerably less efficient at finding the
optimum path than the other algorithms as the paths it output
were long enough to cause Pac-Man to traverse over one and
a half times as many nodes within the maze than any of the
other algorithms.

 The second of the implemented metrics, the length of
time in seconds of each test, is used to infer the overall
efficiency of the algorithm at generating a path for Pac-Man
to take through the maze. This metric unfortunately is not a
wholly accurate representation of an algorithms
computational efficiency as it also includes the time taken
for Pac-Man to traverse the paths output by the algorithm
and is therefore also impacted by its ability to find an
optimum path. A better implementation of a time-based
metric could have been to measure the total time taken
during the computation of each algorithm only to remove
output path length as a factor. Despite this, the metric does
still provide a good idea of each algorithm’s computational
complexity, as a notable difference can be seen between the
length of time taken by less computationally expensive
algorithms, such as BFS, and those that were more
computationally expensive, such as Dijkstra.

B. Findings

 Adam Hubble – in response to the numerical findings of
the iterative, experimental procedure conducted, it is
inevitable that the Breadth-First Search (BFS) algorithm
proves to be performatively optimal compared to all other
algorithms trialled in the investigation. Averaging ‘391.236’
nodes traversed, within a compilation time equating to
’18.695’ seconds. Both of which metrics are the least
significant by value; BFS also presents the shared-most
consistency in nodes traversed across all iterations of the
experimentation and ranks second for compilation time
consistency also. Thus, it can be reasoned that BFS not only,
always computes the shortest possible path between the
position of Pac-Man, the start node, and a specified goal
node, but is also the candidate algorithm for enabling Pac-
Man to traverse efficiently throughout the maze type of
environment configured. This is assumed to be in cause of
the algorithms low computational-overhead, that enables
compilation times to be curtailed and for Pac-Man to then
initiate traversal behaviours faster.

 Competing with BFS, the A* algorithm when applying
the Manhattan distance heuristic, is also proven to be a
successful candidate for the path optimisation domain but is
rendered sub-optimal, for the investigation conducted. This
is presumed to be in effect of the computational expense
arisen by the calculations and appliance of heuristics in its
search, which within smaller and simpler environments, are
consequential to its performative capability. Thereby, one
can assume a different outcome for environments with
increasingly complex structural arrangements, and with
more obstacle-dense areas; providing what is already known
about the optimality of the A* algorithm in the field.

 Moreover, it is imperative to note that all bidirectional
variants of the algorithms investigated are less
performatively optimal, when compared to their
unidirectional counterparts. This is evidenced by each
algorithm computing paths that are either non-optimal or are
optimal but are instead compiled within longer periods.
Each algorithms performance is assumed to be affected by
a collective of factors, that concern the start and goal nodes
being too close to each other, thus rendering a bidirectional
search expensive and impractical. As well, as the
performance implications concerned with detecting
intersecting nodes, in each search programs path.

 In continued discussion of performative degradation,
evidently Depth-First Search (DFS) and its variant:
Iterative-Deepening Depth-First Search (IDDFS), prove to
be the worst algorithms performatively; as is given by the
average number of nodes traversed and compilation times
amassed, that are significantly greater than all other
solutions trailed. We can declare such performance to be
relative to the deepening focuses of either algorithm, that
favours distance in their search and renders them
incomplete; as the production operates with a grid and not
explicitly a graph tree, the algorithm consequently compiles
a path using an elongated pattern within its search. Thus,
Pac-Man traverses more nodes, for which is why its
application is not recommended.

Jack Moorin – the results compiled by the Pac-Man
variants iterative testing show that the most successful of all
the implemented algorithms was clearly the Breadth-First
Search algorithm. BFS not only always output the optimum
path between Pac-Man and the target node but was also the

fastest of all the algorithms to run likely due to it having
very little computational complexity. It is likely due to this
low computational complexity that it was the most
successful of the algorithms as other methods which always
output the shortest path between nodes, such as Dijkstra,
were outperformed by methods which do not but made up
for the time lost navigating unnecessarily long paths by
being notably less complex and faster to run. It is worth
noting however, that BFS is only able to find the optimum
path between nodes within an unweighted graph as it search
process is carried out on the basis of exploring the nodes
neighbouring those that have already been searched without
any considerations made for weight.

The results also clearly show that the least successful of
all the implemented algorithms was the Depth-First Search
algorithm which output the longest paths between nodes and
also took the longest amount of time for Pac-Man to collect
every coin node. Given that the DFS algorithm has the same
computational complexity as the BFS algorithm, the fastest
of the implemented algorithms, the amount of time taken by
Pac-Man to complete each test can largely be attributed to
the length of the paths output as opposed to the algorithm
being incredibly complex.

Arpit Sharma – this experiment concludes that the
bidirectional variants of the Breadth-First Search algorithm
and Dijkstra algorithm are as promising and reliable as their
unidirectional equivalents in an unweighted grid, in terms of
successfully finding the shortest path, that relates to the
algorithm’s completeness. But the bidirectional algorithms
seem to lag behind their unidirectional variants in terms of
time, when there is just a ‘single edge distance’ between the
‘starting node’ and the ‘target node’, or if they just have a
single node between them in the graph tree.

As the size of the map is very small and simple, it can
be afforded to explore all possible nodes using a simple
algorithm like BFS algorithm or Dijkstra algorithm. This is
supposed to be the reason behind the best performance of
the BFS algorithm in the experiment. But, if the complexity
of the map would increase, the performance is expected to
worsen and that of more complex algorithms, which make
use of a variety of heuristics like A* is supposed to go up.

The performance of the DFS algorithm and IDDFS
algorithm is worse among all other algorithms tested. It is
believed to be because of the fact they are not optimal
algorithms. As the complexity of the map would increase,
their chances of getting trapped inside an infinite loop is
expected to increase, leading to glitches, if used for video
games.

C. Future Work

Following the completion of the study, plans and other
ideas can be formulated regarding the completion of future
work, which continues to expand upon the research
completed as part of this study. As discussed in the literature
review, the Shortest-Path Problem (SSP) is an ‘important
problem’ [11] with many applications, such that further
work is warranted into the development and testing of novel
algorithms and approaches, in attempt to solve the problem
more effectively. As demonstrated within the study,
numerous methods already exist that can be used to compile
a path between two given nodes in a graph, however, not all
of these methods are assured to consistently compute the
optimal path between the nodes; specifically those

identified to often face an overwhelming decrease in
efficiency, when faced with increasing space and time
complexities.

The development of an algorithm that could consistently
compile an optimal path whilst not suffering from the same
performance issues of other algorithms, such as Dijkstra,
would be a notable achievement and part of a further branch
of study in continuation of this project. Such that this study
aims to proof some of the most popular and contemporary
attempts led into pathfinding, by researchers in the fields of
CI and AI alike.

D. Challenging Encounters

During the completion of this study, one of the leading
challenges confronted was the successful collaboration of
three geographically distanced individuals, each of whom
was attempting to contribute to the common work of the
study submitted. Due to the intervention of the COVID-19
pandemic, the members of the study were unable to
physically meet in-person, to collaborate and express ideas
thoughtfully, and instead had to make use of online
messaging tools to ground a means of communication. This
medium of collaboration has undoubtedly had impact on the
quality of communication between group members, that
often led to instances of miscommunication and resultant
time wasted on group members completing collaborative
tasks, that were formerly tackled by a group member in
advance of notice being reciprocated.

Another difficulty encountered was resultant of the
geographical distance that separates each study member,
such that each member would attempt to work on the same
document for the project report, or the code solution
comprising the implementation of the Pac-Man variant,
simultaneously. This once more, contributed to time being
wasted, due to the miscommunications of group members,
that often distorted the works progression, relative to
acknowledging the components of the work that were
agreed complete and outstanding. The impacting factor that
this contest had on the project, however, was the amount of
time that was wasted, from continually merging the works
of each study member into a collaborative document.

For the foreseeable future, it would be recommended to
utilize cloud-based software’s that entertain collaborative
efforts, to mitigate the extreme of time being wasted and to
resultingly hasten a projects progression. With reference to
each study member’s investment into the investigation led,
refer to Appendix A and Appendix B accordingly.

Despite all the difficulties listed, collectively, we believe
that the quality of work submitted exceeds the expectations
supposed for an investigation of a similar scope. Thus, we
remark this work as a model for future works in the field of
pathfinding.

VIII. ACKNOWLEDGEMENT

For the relevant staff at De Montfort University, we
express our gratitude for the guiding support and extending
allowances for this project’s completion, namely, Prof.
Aladdin Ayesh and Dr. Ioannis Kypraios. Additionally, we
extend our appreciation for the facilities and resources
available to us, during these unprecedented times of the
COVID-19 pandemic; the members of the nation’s health
service, the NHS, are undoubtedly courageous. May God

bless the souls of those who have lost their lives during this
global catastrophe.

Adam Hubble – I would like this opportunity to exercise
my appreciation for Shirley Lagaran Gocotano, who is
emotionally closest to me currently. Without your continued
support and investment into my interests and endeavours,
would this project reveal a similar quality?

Jack Moorin – I would personally like to extend my
thanks to the other group members of this project, Adam
Hubble and Arpit Sharma for their work on this project.
Without the shared input and discussion from these
individuals, the quality of the study would have been
notably worse than what the completed state showcases.

Arpit Sharma – I would like to thank both of my
groupmates, Adam Hubble, and Jack Moorin for showing
team spirit and hard work throughout the experiment, which
led to the completion of this study.

REFERENCES

[1] IEEE (2021) What is Computational Intelligence?. [Online] IEEE
Computational Intelligence Society. Available from:
https://cis.ieee.org/about/what-is-ci [Accessed: 24/05/21]

[2] Duch, W., 2007. What is Computational Intelligence and where is it
going?. In Challenges for computational intelligence (pp. 1-13).
Springer, Berlin, Heidelberg.

[3] IBM (2020) Artificial Intelligence (AI). [Online] IBM Cloud
Education. Available from: https://www.ibm.com/uk-
en/cloud/learn/what-is-artificial-intelligence [Accessed: 24/05/21]

[4] IFAC Proceedings Volumes (2021) A brief introduction to artificial
intelligence. [Online] Institut Universitaire de France. Available
from:
https://www.sciencedirect.com/science/article/pii/S1474667015330
226 [Accessed: 24/05/21]

[5] IEEE (2011) Artificial Intelligence. [Online] IEEE Xplore.
Available from: https://ieeexplore.ieee.org/document/5941871
[Accessed: 24/05/21]

[6] Brunette, E.S., Flemmer, R.C. and Flemmer, C.L., 2009, February.
A review of artificial intelligence. In 2009 4th International
Conference on Autonomous Robots and Agents (pp. 385-392). Ieee.

[7] Gallagher, M. and Ryan, A., 2003, December. Learning to play Pac-
Man: An evolutionary, rule-based approach. In The 2003 Congress
on Evolutionary Computation, 2003. CEC'03. (Vol. 4, pp. 2462-
2469). IEEE.

[8] Doostmohammadian, M., Pourazarm, S. and Khan, U.A., 2014,
April. Distributed algorithm for shortest path problem via
randomized strategy. In Proceedings of the 11th IEEE International
Conference on Networking, Sensing and Control (pp. 463-467).
IEEE.

[9] Tao, J.Y., Hua, Z.P., Bo, Y.Q. and Hui, F.Z., Study on Simplified
Algorithm for the Shortest Path. In 2009 International Conference
on Information Engineering and Computer Science.

[10] Muniandy, M.A., Mee, L.K. and Ooi, L.K., 2014, October. Efficient
route planning for travelling salesman problem. In 2014 IEEE
Conference on Open Systems (ICOS) (pp. 24-29). IEEE.

[11] Ortega-Arranz, H., Llanos, D.R. and Gonzalez-Escribano, A., 2014.
The shortest-path problem: Analysis and comparison of methods.
Synthesis Lectures on Theoretical Computer Science, 1(1), pp.1-87.

[12] Sanders, P., Schultes, D. and Vetter, C., 2008, September. Mobile
route planning. In European Symposium on Algorithms (pp. 732-
743). Springer, Berlin, Heidelberg.

[13] Barceló, J., Codina, E., Casas, J., Ferrer, J.L. and García, D., 2005.
Microscopic traffic simulation: A tool for the design, analysis and
evaluation of intelligent transport systems. Journal of intelligent and
robotic systems, 41(2), pp.173-203.

[14] Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor,
T., Sanders, P., Wagner, D. and Werneck, R.F., 2016. Route
planning in transportation networks. In Algorithm engineering (pp.
19-80). Springer, Cham.

[15] Rétvári, G., Bíró, J.J. and Cinkler, T., 2007. On shortest path
representation. IEEE/ACM Transactions on Networking, 15(6),
pp.1293-1306.

[16] Böhm, C., Kny, E., Emde, B., Abedjan, Z. and Naumann, F., 2011,
March. Sprint: ranking search results by paths. In Proceedings of the
14th International Conference on Extending Database Technology
(pp. 546-549).

[17] Cui, X. and Shi, H., 2011. Direction oriented pathfinding in video
games. International Journal of Artificial Intelligence &
Applications, 2(4), p.1.

[18] Pan, T. and Pun-Cheng, S.C., 2020. A Discussion on the Evolution
of the Pathfinding Algorithms.

[19] Dijkstra, E.W., 1959. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1), pp.269-271.

[20] Tao, J.Y., Hua, Z.P., Bo, Y.Q. and Hui, F.Z., Study on Simplified
Algorithm for the Shortest Path. In 2009 International Conference
on Information Engineering and Computer Science.

[21] Evans, J., 2017. Optimization algorithms for networks and graphs.
CRC Press.

[22] Cui, X. and Shi, H., 2011. A*-based pathfinding in modern computer
games. International Journal of Computer Science and Network
Security, 11(1), pp.125-130.

[23] Sabri, A.N., Radzi, N.H.M. and Samah, A.A., 2018, April. A study
on Bee algorithm and A∗ algorithm for pathfinding in games. In
2018 IEEE Symposium on Computer Applications & Industrial
Electronics (ISCAIE) (pp. 224-229). IEEE.

[24] Zikky, M., 2016. Review of A*(A star) navigation mesh pathfinding
as the alternative of artificial intelligent for ghosts agent on the
Pacman game. EMITTER International Journal of Engineering
Technology, 4(1), pp.141-149.

[25] Luo, W., 2018, January. PAC-MAN Game Based on SAPF
Algorithm. In 2018 International Conference on Intelligent
Transportation, Big Data & Smart City (ICITBS) (pp. 686-689).
IEEE.

[26] Ortega Vargas, Á.J., Serrano, J.E., Castellanos Acuña, L. and
Martinez-Santos, J.C., 2020. Path Planning for Non-Playable
Characters in Arcade Video Games using the Wavefront Algorithm.

[27] Hui, Y.C., Prakash, E.C. and Chaudhari, N.S., 2004, November.
Game ai: artificial intelligence for 3d path finding. In 2004 IEEE
Region 10 Conference TENCON 2004. (pp. 306-309). IEEE.

[28] Valenzano, R. and Xie, F., 2016, February. On the completeness of
best-first search variants that use random exploration. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol.
30, No. 1).

[29] van Opheusden, B. and Ma, W.J., 2019. Tasks for aligning human
and machine planning. Current Opinion in Behavioral Sciences, 29,
pp.127-133.

[30] Zhou, M. and Gao, N. (2019) Research on Optimal Path based on
Dijkstra Algorithms. 10.2991/icmeit-19.2019.141.

[31] Panda, M. and Mishra, A., 2018. A Survey of Shortest-Path
Algorithms. International Journal of Applied Engineering Research,
13(9), pp.6817-6820.

[32] Martell, V. and Sandberg, A., 2016. Performance Evaluation of A*
Algorithms.

[33] Kapi, A.Y., Sunar, M.S. and Zamri, M.N., 2020. A review on
informed search algorithms for video games pathfinding.
International Journal, 9(3).

[34] Sabri, A.N., Radzi, N.H.M. and Samah, A.A., 2018, April. A study
on Bee algorithm and A∗ algorithm for pathfinding in games. In
2018 IEEE Symposium on Computer Applications & Industrial
Electronics (ISCAIE) (pp. 224-229). IEEE.

[35] He, Z., Shi, M. and Li, C., 2016, June. Research and application of
path-finding algorithm based on unity 3D. In 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science
(ICIS) (pp. 1-4). IEEE.

[36] Appaji, N.S.D., 2020. Comparison of Searching Algorithms in AI
Against Human Agent in the Snake Game.

[37] Carina Krafft (2021) Implementation and comparison of pathfinding
algorithms in dynamic 3D space. [Online] University of Applied
Sciences Hamburg. Available from: https://users.informatik.haw-
hamburg.de/~schumann/BachelorArbeitCarinaKrafft.pdf
[Accessed: 24/05/21]

[38] Barnouti, N.H., Al-Dabbagh, S.S.M. and Naser, M.A.S., 2016.
Pathfinding in strategy games and maze solving using A* search
algorithm. Journal of Computer and Communications, 4(11), p.15.

[39] Rafiq, A., Kadir, T.A.A. and Ihsan, S.N., 2020, February.
Pathfinding Algorithms in Game Development. In IOP Conference
Series: Materials Science and Engineering (Vol. 769, No. 1, p.
012021). IOP Publishing.

[40] Nosrati, M., Karimi, R. and Hasanvand, H.A., 2012. Investigation of
the*(star) search algorithms: Characteristics, methods and
approaches. World Applied Programming, 2(4), pp.251-256.

[41] Python Tutorial (2021) OOP Python Tutorial. [Online] Python.
Available from: https://www.python-
course.eu/python3_magic_methods.php [Accessed: 24/05/21]

[42] Zhang, D.H. and Chen, Y.M., 2014, July. Study on the bidirectional
A∗ algorithm based on avoiding risk. In 2014 International
Conference on Audio, Language and Image Processing (pp. 115-
119). IEEE.

[43] Saian, P.O.N., 2016, October. Optimized A-Star algorithm in
hexagon-based environment using parallel bidirectional search. In
2016 8th International Conference on Information Technology and
Electrical Engineering (ICITEE) (pp. 1-5). IEEE.

[44] Whangbo, T.K., 2007, June. Efficient modified bidirectional A*
algorithm for optimal route-finding. In International Conference on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (pp. 344-353). Springer, Berlin, Heidelberg.

[45] Monzonís Laparra, D., 2019. Pathfinding algorithms in graphs and
applications.

[46] Python (2001), Welcome to Python. [Online] Python Software
Foundation. Available from: https://www.python.org/ [Accessed
18/04/21]

[47] Visual Studio (2021), Visual Studio IDE. [Online] Microsoft.
Available from: https://visualstudio.microsoft.com/ [Accessed
18/04/21]

[48] Pygame (2021), News. [Online] pygame. Available from:
https://www.pygame.org/news [Accessed 18/04/21]

[49] Piskel (2021), Piskel App. [Online] piskelapp. Available from:
https://www.piskelapp.com/ [Accessed 18/04/21]

[50] Leiserson, C.E. and Schardl, T.B., 2010, June. A work-efficient
parallel breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In Proceedings of the twenty-second
annual ACM symposium on Parallelism in algorithms and
architectures (pp. 303-314).

[51] Chen, J.C., 2003. Dijkstra’s shortest path algorithm. Journal of
Formalized Mathematics, 15(9), pp.237-247.

[52] Moore, E.F., 1959. The shortest path through a maze. In Proc. Int.
Symp. Switching Theory, 1959 (pp. 285-292).

[53] Coppin, B., 2004. Artificial intelligence illuminated. Jones &
Bartlett Learning.

[54] Bader, D.A. and Madduri, K., 2006, August. Designing
multithreaded algorithms for breadth-first search and st-connectivity
on the Cray MTA-2. In 2006 International Conference on Parallel
Processing (ICPP'06) (pp. 523-530). IEEE.

[55] Rahayuda, I.G.S. and Santiari, N.P.L., 2021, February. Dijkstra and
Bidirectional Dijkstra on Determining Evacuation Routes. In Journal
of Physics: Conference Series (Vol. 1803, No. 1, p. 012018). IOP
Publishing.

[56] Akanmu, T.A., Olabiyisi, S.O., Omidiora, E.O., Oyeleye, C.A.,
Mabayoje, M.A. and Babatunde, A.O., 2010. Comparative study of
complexities of breadth-first search and depth-first search
algorithms using software complexity measures. In Proceedings of
the World Congress on Engineering (Vol. 1).

[57] Lim, K.L., Seng, K.P., Yeong, L.S., Ang, L.M. and Ch’ng, S.I.,
2015. Uninformed pathfinding: A new approach. Expert systems
with applications, 42(5), pp.2722-2730.

[58] X Cui & H Shi (2011) ‘Direction oriented pathfinding in video
games’ International Journal of Artificial Intelligence &
Applications, NA, 2011

[59] N Lipovetzky, M Ramirez & H Geffner (2015) ‘Classical Planning
with Simulators: Results on the Atari Video Games’ ICAPS
Conference

[60] Cui, X. and Shi, H. (2011) ‘A*-based Pathfinding in Modern
Computer Games’ IJCSNS International Journal of Computer
Science and Network Security, VOL 11, NA, January 2011

[61] S D H Permana, K B Y Bintoro, B Arifitama & A Syahputra (2018)
‘Comparative Analysis of Pathfinding Algorithms A*, Dijkstra and
BFS on Maze Runner Game’, International Journal of Information
System & Technology, Universitas Trilogi

[62] E. W. Dijkstra (1959) ‘A Note on Two Problems in Connexion with
Grpahs’ Numerische Mathematik 1, NA, NA, NA, pg 269 – 271

[63] Y Deng, Y Chen, Y Zhang & S Mahadevan (2012) ‘Fuzzy Dijkstra
algorithm for shortest path problem under uncertain enviroment’

Applied Soft Computing, Southwest University, Shanghai Jiao Tong
University, Vanderbilt University, NA, NA

[64] P Sanders & K Mehlhorn (2008) ‘Chapter 10. Shortest Path’
Algorithms and Data Structures: The Basic Toolbox, NA, NA

[65] M Seo, H Iida, J W.H.M. Uiterwijk (2001) ‘The PN*-search
algorithm: Application to tsume-shogi’ Artificial Intelligence Vol
129, Shizuoka University, NA, NA, NA, pg 253-27

APPENDICES

Appendix A:

Figure 9: 'ProjectManagementACI' spreadsheet file (.xlsx), capturing the 'Activity Log' worksheet used to record the

working commitments and time investments of each member of the study.

Appendix B:

Figure 10: 'ProjectManagementACI' spreadsheet file (.xlsx), capturing the 'Meeting Backlog’ worksheet used to record the collaborative

efforts and assemblies of the study members, with relevance to each’s nature.

