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Abstract — In graph theory, a shortest-path algorithm 

establishes the path of nodes that collectively, constitute to the 

minimal cost between any two vertices in any given graph. 

Pathfinding for intelligent agents within the domain of video 

game production has been investigated for much time now 

and is arguably the most problematic, artificial intelligence 

(AI) behavioral discipline to address absolute optimality for; 

acquiring budget-friendly computation and optimal path 

construction is provably challenging and desired for the 

evolving complexities of modernized video games. This paper 

anticipates the shortest-path problem relative to optimization, 

in exploration of the application of optimal variates of search 

algorithms, used in contemporary works, to address a ‘Rat in 

a Maze’ orientation of the arcade production, Pac-Man. 
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I. INTRODUCTION 

 Computational Intelligence (CI) is the study of the 
design of intelligent agents, which are systems that within a 
given environment, exhibit behaviours regarded as being 
intelligent. Collectively, intelligent agents are generally 
proposed by the “theory, design, application and 
development” [1] of biologically and linguistically inspired 
computational paradigms, that traditionally constitute to the 
“three main pillars of CI”, which are: Neural Networks 
(NN’s), Fuzzy Systems (FLS’s) and Evolutionary 
Computation (EC); however, many of the “nature inspired” 
computing paradigms have overtime advanced and become 
more relevant to applications in what is, an evolving field 
[2]. So much so, the paradigms in the recent era have 
adopted a proliferate presence within “developing 
successful intelligent systems, including games and 
cognitive developmental systems” [1]; considering the 
recent boom of research into the field of Deep Learning 
(DL), CI has become a “core method for artificial 
intelligence” applications, such that some of the most 
successfully regarded “AI systems are based on CI” 
principles. 

 Parallel to the paradigms sponsored by CI, Artificial 
Intelligence (AI) is also the study of the design of intelligent 
agents to “mimic the capabilities of the human mind” [3], 
led by its “pluridisciplinarity” [4], AI facilitates “learning 
from examples and experience, recognizing objects, 
understanding and responding to language, making 
decisions, solving problems” [3] and combinatorically 
applying said concepts to render computing systems 
“capable  of  solving  problems  that  usually  require  the  
ability  of  human  beings” [4]. Such problems typically 

concern a high-time complexity to resolve and natural, or 
biological-based outlooks, specific to visual recognition and 
natural language processing (NLP) for example. As the 
“first large scientific community” [2], many problem 
domains requiring intelligence to be solved has exposed AI 
to a range of applications concerning theorem proving, 
NLP, speech recognition and understanding, image 
interpretation and vision, robotics, and expert systems 
[4][5]. Despite the “several attempts to design intelligence 
with the same kind of flexibility as that of a human”, over 
the fifty-years that AI has been a “defined and active field” 
[6], none has been met with much success [5]; for which is 
why the optimality of AI behaviours is currently known 
problematic to acquire. 

 In correspondence with the abovementioned quandary, 
the premise of this paper is to review the problem domain 
of graph theory, specifically within focus of the shortest-
path problem, relevant to approaching path optimisation in 
unweighted (undirected) graph trees. For which, solutions 
are proposed to mitigate and address, in compliance with the 
array of shortest-path or search algorithms used within 
contemporary applications, to yield provably optimal 
solutions for space-navigation efficiency; this problem is 
contextualised for each solutions performance in the classic, 
arcade video game production: Pac-Man [7]. 

 Conveniently, the paper is componentised into eight 
sections, one of which being this very introduction. 
Encompassed by the sections proceeding this passage, are 
discussions relevant to the contextual nature of the problem 
domain bespoken and works submitted to the field that are 
conceptually similar to the work proposed. As well, are the 
design choices and implementation synopses of the 
solutions investigated, for the software platform relevant, 
and lastly, are evaluative and concluding remarks 
concerning the optimality of the solutions submitted for the 
domain. 

II. BACKGROUND 

A. Problem Definition 

With regards to the definition of the problem tasked, the 

problem can be characterized simply, as the establishment 

of the “optimal path in a graph from a source vertex to a 

destination vertex while minimizing total cost” [8], or 

otherwise, as the extraction of the “shortest route 

(distance), the fastest speed and the lowest expenditure” [9] 

of traversal, from the vertices comprising a graph, that are 

situated between the corresponding points of origin 

(source) and interest (destination). Formally, the problem 

is renowned as the Shortest-Path Problem (SPP), 

exemplified as: “finding the quickest way to get from one 



city to another on a road map” [8], which can otherwise be 

extended to the Travelling Salesperson Problem (TSP) 

[10], defined as: “finding the route for the shortest tour 

between cities with the condition that, each city is visited 

only once and the returning point of the tour will be the 

exact starting point of the tour”. Although, providing the 

nature and scope of work proposed for the Pac-Man 

application, TSP cannot be strictly adhered to given the 

narrow structural arrangement and limited adjacencies of 

coin collectibles (the cities) occupying (traversable) nodes 

in the graph of the game; thus, TSP considerations are 

neglected from the applications state, which subsequently 

informs that the solutions submitted are strictly shortest-

path algorithms. 

B. Field Research 

Finding the shortest path between a point of origin and 
a point of interest in a graph is an “important problem” [11], 
whose solution has many applications. Ranging from car 
navigations systems [12], traffic simulations [13], transport 
scheduling [14], internet route planning [15], web searching 
[16], and vital to our investigation, direction orientated path 
planning within video games [17]. In the context of video 
games, an optimal path between “any two locations is the 
least cost path rather than the shortest path”; given the 
contrasting example of a horizontal pathway and a pathway 
mapped to the concavity of a mound that are of equal length 
(geographical distance), relative to time, the cost incurred 
from ascending, and descending said mound would 
inevitably be more expensive than traversing along a 
horizontal plane, only. Currently within the field and 
context in focus, solutions submitted for pathfinding either 
provide a “high speed search by sacrificing accuracy or 
produce an optimal path but using more time and 
resources”, such that acquiring absolute optimality in path 
planning remains a contemporary subject of study. 

Scientists and mathematicians have long studied the 
problem domain, that is pathfinding [18]. As a “classical 
graph theory algorithm problem”, the problem was first 
solved by Dijkstra’s algorithm in 1959 [19], which is well-
recognised and remains to be one of the best “among various 
algorithms for the shortest-path problem” in the present day 
[20]. Evans and Minieka [21] proposed that most path 
algorithms are bound by three categories: “the single-source 
shortest-path algorithms, the all-pairs shortest-path 
algorithms, and the k-shortest-path algorithms”. Summarily, 
single-source shortest-path algorithms compute the shortest 
paths from a specified point of origin (source) to a point of 
interest (destination), or to all other vertices comprising the 
graph. Whilst all-pair shortest-path algorithms compute the 
shortest-paths between every pair of vertices comprising the 
graph, and k-shortest-path algorithms not only compile the 
optimal path between specified vertices but until kth best 
paths are computed. From which the pathfinding or 
planning problem can be characterised as optimally routing 
through “graphs that contain sets of vertices and edges”, 
representing traversable nodes and their adjacencies. 

Relevant to video game productions, pathfinding 
“generally refers to finding the shortest route between two 
end points” [22], with the support of shortest-path 
algorithms, typically of the single-source type. Almost all 
video games “require pathfinding to make the game more 
human-like” [23] and such it has become imperative to 

apply optimised pathfinding algorithms, since there are 
many “real-time games” being developed nowadays, that 
require solutions to be able to “solve pathfinding problems 
on a more complex environment with limited time and 
resources” [22]. As games are one of the “popular forms of 
entertainment” [23] for which has extended to digital 
platforms such as “mobile phones”, there has been an 
“increasing interest” in pathfinding in games, which is why 
the previous “two decades have seen a growing trend” 
towards applied AI in video games. Such that pathfinding is 
one of the most prevalent “applications of game research 
among AI techniques” at present, where “dozens of revised 
algorithms have been introduced successfully” [22] to the 
field. Undoubtedly, games can be much more fun and 
engaging “when the agents in the game are smart enough to 
take the shortest path” [23], which arises the most 
“common” pathfinding problem in video games, an agent’s 
movement. Given that video games are recognised as 
“excellent experiment” features for pathfinding research, 
we propose the classic arcade production: Pac-Man, as our 
catalyst for identifying the optimal shortest-path algorithm, 
via comparative analysis; the algorithms elected for the 
investigation proposed, express relevance to the 
recommendations of contemporary works existing in the 
field already. Reasoning for the production’s nomination 
derives from its many adaptations to related works already 
existing in the domain [24][25][26]. 

III. LITERATURE REVIEW 

A. Common 

The role of pathfinding is the most ‘visible’ [27] 
problem in the domain of AI and video games. Intelligent 
pathfinding is relevant for all games in which the movement 
of the object under consideration, is calculated by the 
computer, instead of being player-controlled. Objects can 
identify to be anything in a game, such as a person, vehicle, 
or a miscellaneous item, which for the investigation 
proposed, is Pac-Man, an agent who traverses through a 
two-dimensional grid upon finding the shortest path to the 
closest coin collectible, in absence of the enemies or ghosts 
featured in the original orientation of the game.  

For discovering the shortest path from the Pac-Man 
avatar to the target ahead of its movement using the ‘plan 
before move’ [27] strategy, a literature review is purposed 
for identifying a series of optimal, shortest-path algorithms 
specific to the application of unweighted graphs, within a 
two-dimensional space (matrix), with known points of 
origin (source) and interest (destination). This survey was 
conducted over the course of several weeks, to compile 
promising solutions for the problem domain bespoken.   

Algorithm Completeness – the ability of the algorithm, 
representing the probability at which it is “guaranteed to 
return a solution” [28], or in other words, its competency  to 
unfailingly find the target every time one is assigned, and 
subsequently generate a fully-connected path. In video 
game productions, algorithmic completeness is a vital 
characteristic, as without it, a game would promote 
behavioural defects of undesirable natures; perhaps leading 
to hardware or software malfunctioning, that resultingly 
degrades a player’s experience and their continuing 
engagements with it. 

Space complexity – the number of total cells or nodes 
visited by the algorithm for path planning, as a function of 



depth, where the branches (adjacencies) from each node are 
represented by cells within a grid formation; this is 
dependent upon the number of different cells that Pac-Man 
“can reach in any sequence of actions” [29].  According to 
the structural arrangement of the games environment, each 
cell in the grid can have a maximum of four neighbouring 
cells. Therefore, the maximum number of branches to each 
node in the generated graph, cannot exceed four. As for the 
dimensionality of the grid, the environment of the game is 
composited up of thirty rows, which is greater than the 
number of featured columns, that supports twenty-eight; the 
maximum depth of the graph will always be less than thirty 
nodes in length, given this layout. But, the space complexity 
is still high enough to be taken into consideration. An 
algorithm offering less space complexity or otherwise, 
considering fewer nodes for path planning, is preferred.  

Time complexity – similarly, the total amount of time 
consumed by the algorithm to traverse the graph, is a 
function of the number of branches expanding each node in 
the graph, as well as the graphs depth; thus revealing the 
relative time taken by the algorithm to reach the target node 
specified. Therefore, the algorithm operating with lesser 
time complexity is favourable. 

B. Adam Hubble 

Since the advent of the computer, researchers have 
invested more of their attention and time into the “optimal 
path selection problem” [30], otherwise known to be the 
shortest-path problem, which as one of the “well-studied 
topics in computer science” [31], specifically in graph 
theory, has been diversified across many fields concerning 
video games, robotics, route planning, traffic control and 
routing protocols [32], to name a few contemporary 
examples. Consequently, there has been a recent “surge of 
research in shortest-path algorithms due to said problems 
numerous and diverse applications” [31], in attempt of 
alleviating sub-optimal approaches to resolving the 
problem. Generally, the shortest-path problem is 
represented via graphs, for which a graph can be 
characterised as a “set of vertices and edges”, such that the 
edges connect to the vertices to form a graph tree; where 
along the edges of said graphs, it is possible to traverse from 
one vertex to another, in attempt to route through the graph’s 
topology. Relative to the “lengths” of the edges employed 
by a given graph, as otherwise recognised as “weights”, the 
lengths of the edges are representative of the “cost between 
two vertices in a graph”, normally used for “calculating the 
shortest path from one point to another point”. Typically, 
pathfinding anticipates the minimisation of the cost or “path 
length from start to goal” [32] destinations, for which there 
exists “many algorithms” [31] to address, where each is 
purposed for compiling the “shortest route (distance), at the 
fastest speed and with the lowest expenditure” [9] of 
traversal. Translated to video game applications, path 
planning presents to be a significant behaviour of a non-
player controlled (NPC) character or agent, in finding the 
“shortest, fastest, and cheapest way possible to navigate 
from one place to another within the game environment” 
[33]; environments within such games are commonly 
represented by grid-based maps [26]. 

Recognised as one of the “best known and widely used 
pathfinding algorithms” [32], A* (pronounced a-star), 
proposed by Hart, Nilsson, and Raphael in 1967 [34], exists 
as an extension to Dijkstra’s algorithm [19], by adding a 

heuristic value that “estimates the distance from the start 
node to the goal node” concerned in a path. Undeniably, 
various search algorithms were published prior to its 
emergence, one of which being the Depth-First Search 
(DFS) algorithm [34]. But since its “success” in the field of 
pathfinding problems and specifically game AI [22], it has 
been known for “many researchers to have focused on 
variants of A* algorithm”, such that many “revised 
pathfinding algorithms” have been introduced; the success 
of the algorithm is acknowledged to be governed by its 
“more convenient capabilities compared to others” [23], that 
fundamentally enable the algorithm to establish a “feasible 
path between two points in a short period of time" [34]. 
Firstly, A* is “guaranteed to find a path from the start to the 
goal if there exists a path” [22], and it is considered 
“optimal” if the estimated cost calculated is an “admissible 
heuristic”, meaning that the heuristic cost ℎ(𝑛) is “always 
less than or equal to the actual cheapest path cost from 𝑛 to 
the goal”, otherwise known as the geographical distance 
𝑔(𝑛). Lastly, A* is recognised to make the “most efficient 
use of the heuristic” calculated, where no other search 
algorithm uses the same heuristic function to find an 
“optimal path that examines fewer nodes than A*”. Hence 
A* algorithm is regarded as the “most advanced” [25] and 
“provably optimal” [22] algorithm available for the interest 
of the problem domain being explored. 

Extending the study upon the A* algorithm, a heuristic 
approach to path planning infers that rather than a 
“exhaustive expansion” of a graph, like that of Dijkstra’s 
algorithm, which states that “all possible states must be 
examined”, only the states or nodes comprising the graph 
that “look like better options, are examined”; thus, the 
advantage of A* is that it “does not need to traverse all 
nodes, but instead proceeds in the direction of the desired 
road (the target node that needs to be experienced)” [30]. 
This aligns adequately with the progressive absence of coin 
collectibles in the grid of the game’s environment, that Pac-
Man would ‘eat’ overtime, from recursively navigating to 
and from their corresponding nodes; the heuristic function 
used by A* is purposed to estimate the “cost from any nodes 
on the graph to the desired destination” [22], only. By 
introducing the heuristic approach, A* algorithm “improves 
the computational efficiency” of Dijkstra’s algorithm, 
“significantly”. Notably, if the estimated cost returned by 
the heuristic function is known to be exactly equal to the 
actual cost, only the nodes comprising the best path are 
selected and thus, no other node in the grid is expanded. 
Implying that a “good” heuristic that can accurately estimate 
the cost to a specified goal node, may allow the algorithm to 
operate “much quicker”. Although, using a heuristic that 
“overestimates” the actual cost to the goal node, typically 
results in a “faster search with a reasonable path” being 
generated nonetheless, as the search “pushes hard” on the 
closest nodes to the goal; this resorts to fewer nodes being 
explored, when compared to “non-overestimation heuristic 
approaches”.  

However, it must be acknowledged that the A* 
algorithm “often finds the optimal path needed because the 
heuristic function is not suitable”; therefore, meaning that 
the “success rate of using the A* algorithm to select the 
optimal path is not very high” [30]. Although A* algorithm 
has the “shortest time in theory” [35] and is arguably about 
as “good as a search algorithm as you can find so far” [22], 
it also sponsors a series of performance defects that must be 



addressed. Importantly, A* algorithms spatial growth is 
“exponential” [35], where the time complexity of the 

algorithm is 𝑂(𝑏𝑑)  and space complexity is 𝑂(𝑏𝑑)  [36], 
such that when searching in larger game environments, A* 
becomes “expensive in terms of execution times when the 
number of nodes in the map increases” [34]; resulting in the 
search process and games continuity alike, advancing “more 
and more slowly” [35]. Also, maintaining focus upon the 
scenario presented, A* algorithm requires a “huge amount 
of memory to track the progress of each search” [22], that in 
terms of memory allocation, can “rapidly change to the 
environment” [34]; consequently causing “excessive” 
memory leaks, before “producing the solution”. Due to 
these limitations, variants of the A* algorithm have later 
since been “introduced to solve the pathfinding problem”, 
hence the birth of the popular: Anytime Repairing A* 
(ARA*) [37], Theta*, D*, D* Lite, Field D*, AD* and 
Iterative-Deepening A* [36] search algorithms, that each 
attempt to “reduce space requirements in A*” [22] or to 
hasten calculations in “dynamic environments” [32]. 
However, given the domain of Pac-Man and the productions 
relatively small environment, space complexity and the 
resultant time complexity is not of much concern for the A* 
algorithm, in which “obstacle density” is sought to be the 
only contributing factor. 

Providing its popularity in the game industry, Cui and 
Shi [22] regard A* algorithm as the “provably optimal 
solution for pathfinding” in modern video games, where 
despite being easy to understand, its implementation in a 
“real computer game is non-trivial”. The authors reveal the 
algorithms relevance to popular, contemporary production 
titles, like that of Civilisation V and Counter-Strike, 
alongside the “classic real-time strategy game”, Age of 
Empires. Concluding with the A* algorithm being 
performatively optimal for the application of video games, 
for which is why it has become to be the “most popular 
algorithm in pathfinding”, wholesomely. The authors 
further pledge ways to “improve the performance of A*” 
and acknowledge its “huge success” as being the catalyst for 
the efforts that have already been made by relevant 
researchers in the field, to optimise and revise the 
architecture of it. Assuming the space complexity of the 
Pac-Man production, the authors suggest that A* is in fact a 
candidate solution, as it will have “less work to do, and less 
work will allow the algorithm to run faster”. 

Meanwhile, Kapi, Sunar and Zamri [33] also announce 
A* algorithm to be the “most prominent pathfinding 
algorithm”, applied to “grid maps” in video games, that has 
“dominated the field for decades”. The authors identify A* 
algorithm to “outmatch” various contemporary algorithmic 
designs, like that of Bee algorithm and Ant Colony 
Optimization (ACO) within “complex environments”; 
despite A* algorithm’s memory consumption being “three 
times” worse on average. Although it is considered a 
“classic pathfinding solution”, the authors remark that A* 
algorithm is “still being implemented and benchmarked, and 
it is further optimised in most of the current researches”. 
Thus, extending its relevance to the investigation proposed 
by this work.  

Furthermore, also extending the favourability of A* 
algorithm in maze solving applications, Barnouti, Al-
Dabbagh and Naser [38] to explore the application of A* for 
the nature of strategy orientated video games. The authors 

acknowledge A* algorithm to be a compound of a uniform-
cost search and a heuristic search, that is “widely used in 
pathfinding and graph traversal” applications. The authors 
continue to remark that A* does not only find a path 
between a given source and destination but finds the 
“shortest path quickly”. Concluding that A* is a very 
capable search algorithm, whose overall performance is 
“acceptable and able to find the shortest path between two 
points”. As previously seen, they too refer to the algorithm 
as the “most popular algorithm in pathfinding”, given its 
successes. 

Additionally, Rafiq, Kadir and Ihsan [39] recognise A* 
algorithm to be “one of the most popular techniques used 
for pathfinding” in video game development, given “its 
accuracy and performance”. The authors reveal that the 
algorithm has been applied in “several video game genres”, 
such as real-time strategy games, role-playing games, racing 
games, and turn-based strategy games, in the context of 
NPC’s. They continue to reason its prominence in the field, 
due to its “simplicity”, for which is why it has and continues 
to be “chosen by programmers to solve pathfinding 
problems”; alongside what the authors acknowledge the A* 
algorithm to have achieved, in finding the “minimum 
solution by finding the shortest path” between any given 
two nodes. The authors in support of their popularity 
investigation, determine that A* algorithm between the 
period of ‘2010 – 2018’ was the most “popular technique 
applied to pathfinding in game development”, opposing 
metaheuristic techniques such as Genetic Algorithms (GA) 
and ACO, despite their “constant increase in usage as 
pathfinding algorithms” and being deemed to be “better than 
heuristic techniques”, in terms of “time and memory usage”. 
However, the authors conclude from their investigations 
that “improved A* algorithms” in fact return the “fastest 
path in the shortest time”, overlooking the “better 
performance” of metaheuristics overall. A few of many 
existing variants of the A* algorithm that the authors declare 
are: IDA* and Hybrid A*. Providing the space complexity 
of the Pac-Man production proposed for our 
experimentation, metaheuristic techniques are sought to be 
excessive, for which the authors acknowledge to be 
comparatively beneficial for more “complex maps”, 
alternatively. 

C. Jack Moorin 

The pathfinding functionality of shortest path problem 
solutions has applications within video games for artificially 
controlled characters [58] but also within the decision-
making process behind classical AI planners when 
considering potential rewards over a given planning horizon 
which can potentially be mapped into a standard shortest 
path problem and therein solved using a pathfinding 
algorithm [59]. This is discussed within the 2015 paper 
‘Classical Planning with Simulators: Results on the Atari 
Video Games’ where Lipovetzky, Ramirez and Geffner 
discuss the use of traditional pathfinding algorithms within 
AI Planning. By formatting a given planning horizon as a 
hypothetical weighted graph pathfinding algorithm can be 
applied to find the optimum route, which in the case of AI 
Planning is the combination of decisions resulting in the 
“maximum possible reward”. Within this application, the 
authors consider Dijkstra’s pathfinding algorithm for use in 
this approach to optimally solve the ideal route. Whilst the 
ability of the algorithm to always find the optimum route is 
praised, they define it as being inefficient over large state 



spaces as well as other blind search methods such as 
Breadth-First Search and do not consider it for the purpose 
of their AI Planner. This trade-off of performance in favour 
of ability makes Dijkstra an interesting choice for an 
algorithm implementation when regarding the application 
of video games as though performance is often favoured due 
to their real-time nature, it could be used as a benchmark by 
other faster algorithms such as A*. 

The 2011 paper ‘A*-based Pathfinding in Modern 
Computer Games’ by X Cui and H Shi also finds fault with 
the application of Dijkstra’s algorithm, stating that it was 
“soon overwhelmed by the sheer exponential growth in the 
complexity of the game” [60] and provides numerous 
suggestions of algorithms which vary upon the structure of 
A* as potential replacements. While this of course does 
again report on the inefficiency of Dijkstra’s algorithm in 
the face of largely more complex graphs, the paper 
considers notably more recent and highly complex games as 
being the source of the need for algorithms better suited to 
them. While Dijkstra’s algorithm has now been left behind 
in the face of the requirements of recent games with more 
complex graphs, Dijkstra was used initially within earlier 
games to great effect despite being rendered obsolete over 
time. When considering the comparatively low complexity 
of the unweighted graph within the discussed Pac-Man 
game, Dijkstra could perhaps operate as efficiently as the 
other implemented algorithms and otherwise provide a 
useful comparison between algorithms such as the often 
more efficient but less optimal A* and those that always 
output the optimum route between nodes but are faced with 
the problem of becoming drastically slower in the face of 
growing complexity. 

Despite the previous paper’s dismissal of the use of 
Dijkstra’s algorithm when pathfinding over larger weighted 
graph, in the 2018 paper ‘Comparative Analysis of 
Pathfinding Algorithms A*, Dijkstra, and BFS on Maze 
Runner Game’, the authors Permana, Bintoro, Arifitama 
and Syahputra find Dijkstra’s algorithm to be conversely 
optimal for pathfinding when being implemented upon an 
unweighted graph structured as a two-dimensional grid, the 
same configuration used within the Pac-Man game [61]. 
Within the paper the A*, BFS and Dijkstra algorithms are 
implemented within a video game application and their 
performance tested in finding a path from a given start node 
to a target node after the space within the graph has been 
obstructed with the addition of numerous obstacle blocks. 
The performance of each algorithm is trailed against a series 
of obstacle layouts, each further limiting the available space 
within the graph. In direct contrast to the previously noted 
inefficiency of Dijkstra’s algorithm in comparison to that of 
A*, within the implementation of an unweighted graph as a 
two-dimensional grid Dijkstra repeatedly outperforms both 
the A* and BFS algorithms and is chosen by the authors in 
the paper’s summary for implementation within the game. 
This paper is of course highly advocating the use of the 
Dijkstra algorithm and is especially practical for the 
purposes of this study given the large similarity of the 
authors application of the algorithm to the application 
intended for those algorithms implemented within this 
study.  

Dijkstra’s algorithm conceived by Dutch computer 
scientist Edsger W. Dijkstra in 1956 and first published by 
him in the paper ‘A Note on Two Problems in Connexion 

with Graphs’ [62] three years later in 1959 is an algorithm 
commonly used to solve the shortest path problem [63]. 
Originally the algorithm only discovered the optimal path 
between the start and target nodes within a graph however, 
the more commonly used variant of the algorithm today, and 
also the variant implemented within the Pac-Man variant, 
defines a shortest path tree for a given source node by 
finding the shortest path between that node and every other 
within the graph [64]. 

In the 2001 paper ‘The PN*-search algorithm: 
Application to tsume-shogi’ [65], Seo, Iida and Uiterwijk 
propose the use of a new proof-number (PN) search 
algorithm, PN*, for application within a computerized 
version of the Japanese ‘Shogi miniature problem’, ‘Tsume-
Shogi’ in which players attempt to ‘checkmate’ their 
opponents king within a given Shogi board layout, similar 
to the western equivalent of a chess problem. The proposed 
PN* algorithm attempts to improve upon the performance 
of already existing PN algorithms, namely the Breadth-First 
variant of the PN-Search by using “methods such as 
recursive iterative deepening, dynamic evaluation, efficient 
successor ordering, and pruning by dependency relations”, 
which transforms the approach of the algorithm into that of 
an iterative-deepening depth-first search. The ‘Tsume-
Shogi’ problem, similar to the previously discussed Maze 
Runner Game, has many parallels with the pathfinding 
problem within the proposed Pac-Man game. Both 
problems are applied within two-dimensional grid graph 
structures and consider the optimal movement of an entity 
within the graph. This paper of course advocates the use of 
the developed PN* algorithm and its iteratively deepening 
depth-first structure within the ‘Tsume-Shogi’ problem and 
creates considerable favour for the idea of the 
implementation of a similar algorithm within the study 
documented by this paper. 

D. Arpit Sharma 

For the task of finding the shortest path from the Pac-
Man’s current location to the closest coin, several 
algorithms were considered based on the criteria described 
in the above section.  Bidirectional Breadth-First Search 
algorithm and Bidirectional Dijkstra algorithm were given 
priority because of the desirable characteristics they 
possessed discussed in detail in this section. 

The BFS algorithm was invented in 1945 by Konrad 
Zuse. One of its reinventors, Edward F. Moore, redesigned 
it in 1959 for finding the shortest path in a maze [54], which 
is the very same problem, that is being tested in the 
experiment. It is still one of the classic algorithms used for 
the problem of maze solving. 

For the game used in the experiment, as all the nodes 
have an equal weight of a single unit, the grid can be 
considered as an unweighted graph as the cheapest path is 
always the shortest one. BFS is a suitable for unweighted 
graphs. As the next closest coin can be in any direction, an 
undirected search was needed and because the Breadth-First 
Search ‘works on both undirected and directed graphs’ [56], 
it was preferred. The algorithm searches in all directions and 
terminates exploration once it finds the target. 

The time complexity is very crucial for video games as 
it amounts to undesirable lags as it determines, how much 
‘time the program will take’ [58] to compile. If the 
computation time for path planning is high, it will slow 



down the game and affect its playability. The time 
complexity of the unidirectional Breadth-First Search in big 

‘O’ notation is 𝑂(𝑏𝑑), where ‘b’ and ‘d’ are described in the 
previous section. To decrease the time complexity, to make 
the algorithm quicker, a bidirectional Breadth-First Search 
algorithm was preferred as it has a much lesser time 

complexity of just 𝑂(𝑏𝑑/2). The reason is that instead of 

just searching from a single starting node, the search begins 
from the target node as well, at the same time. The 
termination condition is met, whenever both the searches 
have traversed any common node in the graph-tree. 

The space complexity of the algorithm is proportional to 
the ‘storage the program will take’ [58] while pathfinding as 
it is the number of nodes, the algorithm must traverse to find 
the shortest path from starting node to the target. Using the 
similar notation as used above, the space complexity of the 

unidirectional Breadth-First Search is 𝑂(𝑏𝑑). On the other 
hand, the bidirectional Breadth-First Search algorithm has 

the space complexity of just 𝑂(𝑏𝑑/2) as the search begins 

from both the starting node and the destination node, the 
graph is explored to a much lesser extent than it would be if 
the search had begun from a single end. 

Algorithm completeness is one of the most important 
characteristics of an algorithm when it comes to video 
games. Within the application of video games, it its 
generally more important for a solution to always be found, 
no matter the incurred overhead than to use a less complex 
method with a lower chance of ultimately finding it. Since, 
it explores the nodes layer by layer, space and time 
complexity offered by the algorithm is considerable, but it 
guarantees to find the target node even in an infinite graph. 
Although, generally, the graph generated by the algorithm 
while path planning is finite because of the very limited and 
fixed size of the maze, but even if it had been more complex, 
it would still eventually find the target. Therefore, the 
Breadth-First Search is a complete search unlike the Depth-
First search, which sometimes gets trapped inside part of the 
graph away from the goal and never returns [55].  It makes 
it a good shortest path searching algorithm. The bi-
directional variant is also a complete search and guarantees 
the solution. 

Since, it had been found out at this stage that the 
bidirectional Breadth-First Search algorithm is good for 
making optimum paths, and for video games in general, 
another algorithm to consider for making a bidirectional 
variant of, was the classic Dijkstra for the experiment as its 
very similar to Breadth-First Search in working as it also 
explores the entire area while searching, because of which 
its bidirectional variant is also a ‘complete’ algorithm. 
Although, its bidirectional variant can be quicker at times, 
but is not always guaranteed to return the shortest path 
unlike the typical bidirectional BFS. The reason is that the 
algorithm may terminate on a common node leaving the 
alternative, more optimal node at times. 

However, its longest possible path can still be a lot 
shorter than the possibility of sub-optimal path calculated 
by the Bidirectional Depth-First Search algorithm.  
Although the results expected from this algorithm are not 
always optimal, it can still be a competitive algorithm for 
the pool of algorithms selected for this experiment and for 
future studies regarding the optimization of the algorithms. 

The algorithm works by ‘dividing two graph matrix’ 
[57] and then conducting independent searches. The results 
are combined at the instance, the algorithms search space 
intersects. Both the units use the ‘shared memory’ in the 
program being run. 

The IDA* from the A* algorithms which have been 
proven algorithms in the gaming world as discussed in the 
above sections, have been ‘derived’ [59] from Dijkstra, 
making its bidirectional variant, Bidirectional Dijkstra, 
alongside Bidirectional Breadth-First Search, one of the 
classic candidates to be preferred for the experiments 
involving video games. 

IV. SOLUTION DESIGN 

A. Common 

Following the decision to implement numerous 
pathfinding algorithms within the Pac-Man variant, the 
requirements of accurately testing and trialling each of the 
implemented algorithms to compile results reliable enough 
to inform further observations regarding their suitability for 
use in the shortest path problem becomes a notably large 
undertaking and threatens to push the time constraints of the 
study. Fortunately, the entirely digital format of the 
proposed Pac-Man game and the full automation of the Pac-
Man character within the game following an algorithms 
implementation, creates the possibility of extending Pac-
Man’s automation to cover not juts collecting every coin 
node within the maze environment but also with regard to 
its own testing and compilation of results regarding the 
overall performance of each of the implemented algorithms. 
Considering the definition of a new maze environment and 
repositioning of Pac-Man within the level, following the 
resetting of a level encountered within the original Pac-Man 
game due to the player either having successfully completed 
the previous level or having fallen victim to one of the non-
player character ghost enemies within the grid, a potential 
aim for the Pac-Man variant implementation would be to 
include this functionality within the implementation of Pac-
Man using an implemented pathfinding algorithm. By being 
able to correctly reset the environment and position Pac-
Man at a new starting position with the implemented 
variant, enables the repeated resetting of the maze 
environment and repositioning of Pac-Man required to 
implement an iterative testing architecture of each 
algorithm’s performance with Pac-Man being positioned at 
each of the possible starting points within the grid. This 
would allow the testing of each algorithm to not only be 
carried out entirely autonomously without the need for 
oversight or involvement by those working on the project 
but also dramatically increase the amount of result data able 
to be compiled during the study as if correctly implemented, 
iterative testing functionality would enable the Pac-Man 
variant to trial and compile results regarding each 
algorithms performance considerably faster and more 
efficiently than if the testing process were completed by 
hand. Increasing the number of results compiled during the 
testing process further increases the validity of the results 
collected and of any observations made following their 
compilation and analysis as the repeated carrying out of 
trials remains a commonly used practice within all fields of 
study regarding testing processes caried out where the 
outcome of the test is unknown to the person or people 
completing them. Repeating trials allows them to confirm 
the accuracy of their tests as any results that were affected 



by one or more external factors changing the outcome of the 
test would become more apparent when considered in 
combination with other tests not affected in the same way as 
the erroneous results would not fit the established trend. 

Typically, within the scientific field, tests are repeated a 
minimum of three times to ensure their accuracy. For the 
purposes of this study, provided none of the implemented 
algorithms are in any way stochastic and implement an 
entirely deterministic approach to generating a path between 
the provided start and target nodes, repeatedly trialling the 
performance of an algorithm with Pac-Man beginning at the 
same starting position is unnecessary as provided conditions 
remain the same between tests, the same path will be 
generated by the algorithm with little to no variance between 
the time taken to compute the result. Therefore, instead of 
wasting time doing this the Pac-Man variant when 
determining the performance of each algorithm at collecting 
every coin node within the graph, any autonomous testing 
functionality should instead trial the algorithms 
performance with Pac-Man beginning at each of the 
potential starting positions within the graph to ensure the 
algorithms performance is tested over a variety of graph 
configurations. 

With the aim of further extending the suggested iterative 
testing functionality, a further improvement would be for 
Pac-Man to trial each of the implemented algorithms in 
sequence, allowing for the creation and compilation of 
results for all of the algorithms in one go. Implementing 
testing in this way would make the process entirely 
autonomous and provide the easiest and most efficient 
solution to reduce the overall time spent compiling results 
on each algorithms performance. 

B. Adam Hubble 

Proceeding from the review of the literature studied, and 
relevant to the algorithms elected for the individual 
contribution to the investigation proposed, A* algorithm 
and its bidirectional counterpart, Bidirectional A*, were 
selected in correspondence with the general findings of 
heuristic searchers being optimal within simpler 
environments; similar to that of the structural arrangement 
that Pac-Man engages. As not explicitly referred to within 
the review conducted, Bidirectional A* was also elected as 
one of many suggested, improved variants of A*, given its 
offering for space and time complexity reduction [42], 
despite its minimalistic advancement from the original, 
unidirectional implementation. 

As revealed by the series of works submitted to the field 
of pathfinding, specifically for video game productions, the 
A* algorithm undoubtedly remains to be regarded as one of 
the most popular and provably optimal search algorithms in 
contemporary research, regardless of it being defined as a 
classic appeal to graph traversal optimisation. Its application 
within the Pac-Man game was sought optimal, providing its 
best-first search capability according to heuristic evaluation, 
for exploiting the most promising nodes in the grid, to reach 
a specified goal node. For which as previously realised, A* 
is competent in guaranteeing the optimal shortest path, as 
recognised as a complete search algorithm, assuming that 
the heuristic is of an admissible measure. 

In continued mention of heuristics, supporting the 
relevant authors claims regarding the performance 
variability of the algorithm when using different heuristic 

functions, it is sensible to further propose the 
implementation of multiple, commonly used heuristic 
methods, to satisfy the comparability of the investigation. 
Given that the A* algorithms bidirectional variant utilises 
heuristic capabilities also, heightens the uncertainty of 
outcomes produced by the experiments led, in concentration 
of the iterative benchmark projected for purpose. 

C. Jack Moorin 

Following the review of the papers discovered relevant 
to the study in the previous section of the report, the 
algorithms chosen to be implemented for the individual 
contribution to the project were the Dijkstra and Iterative 
Deepening Depth-First Search algorithms. Of the two 
potential variants of Dijkstra, the variant used to create a 
shortest path tree, using Pac-Man’s position as the source 
node. 

As discovered from the literature review, Dijkstra’s 
algorithm is known for being notably less efficient than 
other pathfinding algorithms, especially when implemented 
across highly complex graph structures, however, given the 
simplicity of the maze environment within the Pac-Man 
game as a relatively small and unweighted graph, Dijkstra 
could potentially perform outperform other algorithms 
known for being more efficient, due to the fact that it will 
always output an optimal path to a target node which could 
result in Pac-Man collecting every coin node within the 
graph faster. 

Unlike Dijkstra, IDDFS does not always output the 
optimum path however, it is expected to perform more 
efficiently than Dijkstra as it is notably less complex. This 
will make for an interesting comparison between the two 
within the study as one approach favours performance while 
the other favours efficiency. 

D. Arpit Sharma 

After conducting the review of the papers mentioned in 
the previous section, looking out for the desired 
characteristic for the shortest pathfinding algorithm for the 
problem being used in the experiment, an unweighted two-
dimensional maze, where the search had to be undirected as 
the direction of the goal is unknown, Bidirectional Breadth-
First Search algorithm and Bidirectional Dijkstra algorithm 
were finalized.  The algorithms were used to plan the path 
for Pac-Man to get to the next closest coin, in the game. 

Based on the paper reviewed, the Bidirectional Breadth-
First Search algorithm is thought to be one of the most 
efficient and promising algorithms based on its space and 
time complexity and algorithm completeness.  Also, found 
from the papers was that the bi-directional BFS algorithm 
was originally implemented for maze solving by one of its 
reinventors, making it an eligible algorithm for the 
experiment.  Most importantly it always guarantees the 
shortest path, which is one of the main goals of the 
experiment. 

But the second chosen algorithm, Bidirectional Dijkstra 
is not expected to yield as good results as the first algorithm 
as it does not always promise the shortest path. However, in 
terms of algorithm completeness, it is found to be as 
promising as the previous algorithm, which is very 
important to prevent glitches in video games. 



V. SOLUTION IMPLEMENTATION 

A. Common 

Following the decision to implement the trialled 
algorithms within the maze environment of the popular Pac-
Man game, a variant of the game was implemented using 
the chosen programming language, Python [47], and the 
Visual Studio [48] integrated-development environment. 
The implementation of our Pac-Man variant, of course 
borrowed heavily from its’s predecessor, with respect to 
both the mechanics of the original; a player-controlled 
character: Pac-Man, is directed through a grid-based maze 
environment with the aim of collecting as many of the 
power pellets spread throughout the maze as possible whilst 
also avoiding the multiple ghost enemies also in the maze, 
and visually: with the assets created for and used in our 
variant being either heavily inspired by or taken directly 
from the original game. For the purposes of our study, 
further added to this base implementation of the game was 
functionality enabling the user to select from a list of 
defined pathfinding algorithms, an algorithm to be used by 
an entirely computationally controlled instance of Pac-Man, 
to traverse the maze environment and collect each power 
pellet. To further enable the testing and result compilation 
necessary of each defined algorithm, iterative testing 
functionality was implemented enabling repeated trialling 
of either a specific algorithm or each algorithm in sequence 
with the total time taken for Pac-Man to entirely traverse the 
environment and the number of nodes it traversed trialled 
and output to a file for each possible starting point within 
the maze. 

 

Figure 1: Graphical visualization of the Pac-Man game variant, 

implemented for the purposes of this study. The figure illustrates 

Pac-Man using the Depth-First Search algorithm to find a path 

between itself and each of the coin collectibles within the maze. 

For the purpose of ease, the pygame [49] python library 
was used in development of the Pac-Man variant. Designed 
bespoke for the purpose of the creation of video game 
applications, the pygame library provided functionality for 
the creation of the creation of the game screen window and 
the drawing of the game’s graphics to it as well as 
processing of the keyboard input events used to control the 
game. Use of the pygame library enabled the creation of the 

Pac-Man variant in a notably shorter amount of time than 
would have otherwise been possible and therefore meant 
that more time was able to be dedicated to the development 
and trialling of each algorithm. 

The creation of the graphical assets used in the Pac-Man 
variant not available online, was handled using the Piskel 
online sprite editor [50]. An entirely free, online, and open-
source application, Piskel enables the creation of static and 
animated pixel art sprites and further exporting them to 
various file types, enabling their use in other applications. 
For the purposes of this project, Piskel was used in the 
creation of the frames used in the animation of the Pac-Man 
character and the four Non-Player Character ghost enemies. 

To enable easy editing of the maze environment 
navigated by Pac-Man during the game, the environment is 
constructed from an external text file, walls.txt, which is 
loaded into the application as its started and its contents used 
to define the two-dimensional array used both for collision 
detection by the Pac-Man character when traversing the map 
and by the algorithms when determining a path through the 
maze. The file itself contains a twenty-eight by thirty grid of 
characters, each of which defines the purpose of its 
respective cell within the maze. The character ‘C’ for 
example denotes the corresponding cell of the maze 
environment contains a coin, the misnomer by which our 
own variant of the Pac-Man game refers to the power pellets 
of the original, and when the game is loaded will cause a 
coin to be created within the corresponding maze cell. Using 
an external text file to define the maze environment used 
within the game makes it easier to edit the game 
environment as to change the purpose of a grid cell the 
relevant character within the file must simply be changed to 
refer to the desired purpose of the cell. 

To assist in the implementation of the various 
pathfinding algorithms used, a debug mode was 
implemented, which when activated by pressing the ‘tab’ 
key, draws a two-dimensional grid onto the game 
environment which can be used as a reference by the 
programmers to easily work out the grid reference of any 
cell in the maze. This is useful during implementation as the 
algorithms can be set to output the paths they create or the 
cells they check, in order for the programmer to understand 
how the algorithm is attempting to search the grid. By 
coupling this approach with the grid provided by the debug-
mode the programmers can easily visualise the search 
process and will therefore have a better chance at 
understanding the cause of any potential errors with the 
algorithm. 

Also implemented to assist in understanding how each 
of the algorithms searches the grid is the drawing of Pac-
Man’s current path within the maze also drawn on top of the 
game environment, so that it’s clearly visible the path the 
algorithm has generated for Pac-Man to use in traversing the 
maze. The maze cell containing the coin targeted by the 
pathfinding algorithm has an overlaying red square drawn 
on it and the cells making up Pac-Man’s path through the 
maze have a blue overlaying square drawn on them. This 
allows programmers to easily see if the implemented 
algorithm is correctly finding the shortest path to the 
targeted coin or if the generated path is taking some other 
convoluted route erroneously and the algorithm’s 
implementation needs to be checked. 



 

Figure 2: Graphical visualization of the Pac-Man variant during 

runtime, showcasing the debug mode implemented. 

To ensure the comparability of the algorithms 
implemented as part of this study, an implementation of the 
Breadth-First Search algorithm without pathfinding 
functionality is used to determine the coin node to be 
targeted by the chosen pathfinding algorithm. This 
implementation of using the BFS algorithm to determine the 
target and then the pathfinding algorithm to determine Pac-
Man’s path is used for the testing of all of the pathfinding 
algorithms despite the implementation of BFS with 
pathfinding functionality as the first of the studied 
algorithms as many of the other implemented pathfinding 
algorithms such as Dijkstra do not contain their own search 
functionality and require knowledge of the location of a 
targeted node within the grid to inform the process of their 
pathfinding. Therefore, despite the fact that both the 
implemented BFS algorithm and the other studied algorithm 
with search functionality, Depth-First Search, could both be 
used to locate a coin node as well as determine a path 
through the grid, the performance of these algorithms will 
be comparable to those without search functionality as the 
only varying factor will be the algorithm’s pathfinding 
functionality. 

The iterative testing functionality developed enables 
either a chosen single pathfinding algorithm or each in 
sequence to be repeatedly trialled and have its performance 
results compiled and output to a file completely 
autonomously. When trialled the selected pathfinding 
algorithm will be used to navigate Pac-Man through the 
maze environment, collecting each of the coins spread 
throughout the grid. The performance of each algorithm is 
trialled repeatedly with a total of two-hundred and eighty-
five tests being carried out per algorithm with Pac-Man 
starting at each of the possible starting positions within the 
maze. The total time taken for Pac-Man to collect every coin 
and the number of nodes it traversed in doing so for each 
trial is output to an external text file for the algorithm 
currently being trialled. If all the algorithms are being tested 
in sequence, the first algorithm to be implemented as part of 
this study, Best-First Search, will be trialled initially and 
once its trials are complete the next algorithm in the list will 
be trialled until each of the algorithms has been tested. 

 

Figure 3: Graphical visualization of the Pac-Man variant, at the 

start of runtime. Illustrating the menu-environment of the 

application where algorithms can be executed in isolation or 

sequentially. 

With respect to the contribution of each study member 
to the implementation of the Pac-Man variant, it is worthy 
to note that each member contributed equally to the 
development of games initial state, the supporting 
functionality discussed regarding debugging and iterative 
testing, as well as the implementation of the relatively 
simple Breadth and Depth-First Search algorithms, that 
were rendered complete during the early development phase 
of the project. Following the initial development, each 
member had elected and subsequently implemented two 
search or pathfinding algorithms, that each discovered to be 
worthy for the investigation said, as reviewed within the 
Solution Design section. The individual development of 
each of these algorithms is detailed below, specific to each 
member of the study. 

B. Adam Hubble 

A* – as the algorithm traverses through the graph or 
grid-based map representation of the game’s environment, 
resembling a maze, A* follows a path of the lowest known 
cost (least distance travelled in the shortest time), whilst 
maintaining a sorted, priority queue of alternate path nodes 
along its route of traversal. At any given point in the 
environment, if a node of the path currently being traversed 
features a higher-cost (more expensive to route) than 
another encountered (visited and known) node, the 
algorithm sensibly abandons the higher-costing node and 
instead, traverses the lower-costing node. This procedure 
recurs until the traversing node becomes the goal node, 
representing the destination of the path. Summarily, A* 
conforms to a best-first search, which explores a graph by 
expanding the most promising nodes according to cost that 
is compiled using a heuristic evaluation function, denoted as 
𝑓(𝑥), and finds the least-cost path from a given starting 
node (the source) to a specified goal node (the destination). 
The heuristic function it utilises, a “distance-plus-cost” [40] 
evaluation method, purposes to determine the order in 
which the search visits or explores nodes in the graph tree, 



or respectively the grid. For which, the function is known to 
be a summation of two subsidiary functions, denoted as: 

 

𝑓(𝑥) = 𝑔(𝑛) + ℎ(𝑛) 

 

 Where 𝑔(𝑛)  represents the path-cost function, 
representing the cost or actual distance from the starting 
node to the current node of traversal. And ℎ(𝑛) represents 
an admissible, heuristic estimate of the distance to the goal 
node, from the current node of traversal; for a path to be 
considered the least-cost path from start to goal, the 
heuristic “must not overestimate the distance to the goal”. 

 For the algorithm’s implementation, initially, given the 
grid-based representation of the game’s environment, a two-
dimensional array representing its structural arrangement is 
instantiated, to distinguish between the positions of nodes 
occupied by obstacles and nodes that are traversable by the 
Pac-Man avatar. Given the uniformity of the traversable 
cells in the original production, the grid adopts the 
schematic of an unweighted and undirected graph, where 
nodes comprising the map are binarily classified as the 
values of ‘1’, representing the occupation of obstacles, and 
‘0’ representing their absence; this is iteratively addressed 
by a ‘for-loop’ statement. In knowing of this configuration, 
the path-cost of the algorithm can simply be acknowledged 
as a representative of the number of nodes that it is 
comprised of. Meanwhile, the start and goal nodes of each 
path are instantiated to be relative to the position of Pac-
Man in the grid, at the time of path computation, and the 
position of the goal also; both the start and goal nodes 
configured for every path compiled are bound by a class, 
namely ‘Node’, for which they are objects of. Abstracting 
the properties of each node comprising the algorithms 
procedure, was sought beneficial for maintaining the 
robustness of the codebase and for ensuring cost evaluations 
are performed accurately, where each node as an object of 
the class, has an associated position, parent node, path-cost 
(𝑔 ), heuristic estimate (ℎ ) and final cost (𝑓 ) value. In 
continued mention of the class, therein features two magic 
methods [41], otherwise known as Dunder (double 
underscore) methods, that are unique to the python 
programming language, and enable comparison-wise 
statements to be autonomously invocated for efficiency 
practises; thus, allowing the theoretical nature of the 
algorithms procedure to be better realised, from an 
enhanced prospect of simplicity. To note, the ‘Node’ class 
is also borrowed by the bidirectional variant of A* proposed 
and would also be compatible with other heuristic-driven 
algorithms, in future works. 

 Preceding the algorithmic operation of A*, the 
algorithms priority queue variables are instantiated, as a set 
of open and closed lists of nodes, each represented by an 
empty array variable initially, representative of the list of 
“nodes that are children of already expanded nodes, but 
have not been expanded themselves, yet” [37], and the list 
of “nodes that have already been processed”. Where at each 
step of the procedure, the node with the lowest cost 𝑓(𝑥) is 
removed from the priority queue or open list, becoming the 
current node of traversal; the 𝑓(𝑛) and 𝑔(𝑛) values of the 
current node’s neighbours are then updated, before they are 
appended to the queue for processing in the next iteration. 
This sequence of operations continues to recur until the node 

removed from the queue is the goal node, which can be 
identified by the least cost and 𝑓  value compared to any 
other node in the queue; subsequently, the 𝑓 value of the 
node traversed is then also acknowledged as the cost of the 
shortest path, given that its ℎ  value in an admissible 
heuristic, would equate to the value of zero (no distance to 
the goal from the current node).  

 To orchestrate this scheme, initially, the start node of 
Pac-Man’s path is appended to the open list, for 
neighbourhood processing. In achievement of the 
algorithms recursive state, a ‘while-loop’ declaration is then 
placed and conditioned by the open list, for which continues 
to iterate the procedure until no nodes are contained by the 
list, such that the length of the list equates to zero. Therein, 
for each cycle of the procedure, the nodes comprising the 
queue are sorted by ascending order relative to their 𝑓 
values, where the node with the least cost surfaces to the top 
of the queue; this capability is addressed by the language-
provided ‘sort’ method in compliance with the ‘Node’ 
class’s iterative operator, contained by its ‘__it__’ Dunder 
method. Proceeding from the sorting process, the current 
node is then assigned to the properties of the least-cost node 
in the open list, before the least-cost node is then removed 
from the open list and oppositely appended to the closed 
one; this serves to identify the current node as processed, for 
which prevents its cost being calculated multiple times.  

 Prematurely, the position of the current node is then 
compared via ‘if-else’ statement, with the position of the 
goal node, for reducing the potential time complexity of the 
algorithm; if the condition presents to be ‘true’, the path 
from the start node to the goal node is thus known and can 
be constructed for Pac-Man’s traversal operation(s). For the 
path’s generation, an empty array variable is instantiated 
(the path), where within a subsidiary ‘while-loop’ 
declaration, the positions of the parents of the current node 
traversed can be appended to it; through backtracking, the 
algorithm is orderly able to construct the path traversed, 
from the goal node to the start node. Upon its compilation, 
the start node is then appended to the path, as not already 
considered, before the order of the path is then inversed to 
accommodate for the reversed cycling of its generation. 
Resultingly, a fully-connected path is processed and 
returned by the containing method, namely ‘AStarSearch’, 
which terminates the procedure and preserves operational 
time (reduced time complexity) by ignoring further 
statements in the corresponding method. 

 However, if the condition presents to be ‘false’, such 
that the current node traversed is not the goal node, then 
alternatively a series of directions representative of 
neighbouring nodes are populated in an array variable, 
relative to the current node’s adjacencies, for which can 
only be of up to four directions: up, down, left, and right. 
Each neighbouring node’s position is simply calculated via 
an addition operation, that sums the current nodes positional 
values with those of each potential direction calculated; this 
is orchestrated by a ‘for-loop’, that iterates through each 
potential direction representing the location of a 
neighbouring node in the grid, as contained within the 
corresponding array variable. For each neighbouring node, 
assuming its calculated position exists within the boundaries 
of the grid, and its value within the grid does not resemble 
an obstacle ‘1’, thus meaning that the node is traversable, as 
well as the node not existing in the closed list already (its 



cost has not been calculated previously), then aligned with 
the active heuristic estimation metric, the neighbouring 
nodes ℎ value is calculated. This is achieved via invocating 
the heuristic evaluation method, that is configured with four 
popular distance measures (discussed later). Beyond the 
neighbouring nodes cost being registered, then for all nodes 
contained in the open list, if the neighbouring node is 
uniquely positioned in the grid and its cost is less expensive 
than any of the contained nodes, it is then appended to the 
queue. Upon being appended, in the following iteration of 
the procedure the node will be considered for expansion, in 
finding the shortest path between the start node and the goal 
node specified. All the above-mentioned conditions are 
addressed by a series of nested ‘if-else’ statements, 
accompanied by a Boolean state, for adhering to simplicity. 

 

Figure 4: Graphical visualization of the path expansion and 

deduction phases, of the A* algorithm. Relative to environment 

of the Pac-Man game. 

Bidirectional A* – as opposed to searching from the start 
node to the goal node directly, A* algorithms bidirectional 
variant enables two searches to be conducted in parallel. 
Such that one of which searches originates from the start 
node whilst the other originates from the goal node; the most 
“ideal state is that two search programs will meet in the 
middle, then the time is only half of their original cost” [42]. 
However, if the conditions modelling the searches 
intersection detection is “bad”, it is possible that the “search 
time can be doubled”, alternatively. Operationally, 
bidirectional search’s purpose to narrow the expansion of 
nodes in a graph tree, which typically enlarges over the 
course of a unidirectional search. 

For its implementation, as an arguably simplistic variant 
of A*, the adaptation can adopt all functionality declared 
prior for the algorithmic procedure of A*. Differently, the 
path expansion and deduction schemes of the algorithm are 
abstracted into distinct methods, to appropriate the re-use of 
the available functionality, for effectively addressing the 
“forward and backward” modes of search that the algorithm 
simultaneously entertains. For which, two declarations of 
start nodes, goal nodes, open lists and closed lists also exist, 
to cater for the algorithm’s polarity, that consequently 
redefines the condition of the algorithms recursive state, as 
the procedure instead recurs until both instances of open list 
contain no nodes to be expanded; unless a node is common 
to both searches, thus there being a point of intersection. 
Unlike Unidirectional A*, the termination condition of 
Bidirectional A* not only accounts for when each search 
reaches its target, formerly as the goal node, but when two 
searches intersect such that they “meet at the same node” 
[43].  

Upon one of three components of the termination 
condition being satisfied, the paths generated by each mode 
of search up until the point of intersection, or the goal 
node(s) alternatively, is deduced from the all the nodes 

visited by the algorithm. Identical to the A* algorithm, an 
empty array variable is instantiated for each search (the 
paths), where within a subsequent ‘while-loop’ declaration, 
the positions of the parents of the current node traversed can 
be appended to it. Through backtracking, the algorithm is 
able to construct two paths, from either search’s start node 
to its corresponding goal node, or to the node at which the 
searches intersect. Proceeding from either path’s 
population, and in the company of a series of conditional 
and iterative statements, all nodes comprising either 
searches path that defer from the common pathing focus or 
in case of error, that surpass the point of intersection, are 
removed from consideration to ensure that the least-cost 
path is found. In which both paths can then be merged, to 
find the shortest path between the common start and goal 
node of the search; here, the start nodes of each search 
operation are appended, if not already concerned in the path 
compiled. 

Oppositely, if none of three termination conditions are 
satisfied, alike Unidirectional A*, Bidirectional A* then 
continues to compile a series of promising neighbouring 
nodes, via invocating the relevant path expansion method 
for each mode of search, until the termination condition is 
eventually fulfilled. Thus, Bidirectional A* also guarantees 
that a path is generated but its optimality is questionable, 
considering that it “does not guarantee the route found to be 
optimal, if the search ends when the forward and backward 
search meet in the middle” [44]. 

 

Figure 5: Graphical visualization of the path expansion and 

deduction phases, of the Bidirectional variant of the A* 

algorithm. Relative to environment of the Pac-Man game. 

Heuristic Evaluation – as informed search algorithms 
and thereby users of heuristic functions, A* and its 
bidirectional counterpart can find the shortest path through 
a search space, using a series of heuristic methods purposed 
for estimating how close an agent (Pac-Man) is to the 
specified goal; that in return, determines the order in which 
the search visits nodes in the grid. Notably, it must be 
acknowledged that the “time complexity of A* depends on 
the heuristic” [40] active in its search. 

For comparative sake, the application features four well-
known heuristic functions for grid-based representations of 
maps; this was sought to be useful for investigating the 
resultant behaviours of Pac-Man, specifically for realising a 
supposed trade-off between speed and accuracy. The 
heuristic functions sponsored by the work submitted are 
Manhattan, Euclidean, Octile and Chebyshev-type 
distances, each of which methods propose a unique set of 
operations, optimal for separate environmental conditions 
and traversal capabilities of agents. For simplicity, all 
heuristic methods are conditioned by a series of ‘if-else’ 
statements, bound by one method, namely ‘Heuristic’, 
where either heuristic calculation can be invocated relative 
to a string variable that is ‘passed-by-value’. For their 



implementation, a series of math-related expressions are 
simply replicated [45].  

Purposed for reducing the relative space and time 
complexities of each algorithm proposed by the 
experimentation presented, Manhattan distance claims a 
presence in each of the relevant methods, as a “good 
heuristic” for when a grid only allows horizontal and 
vertical movement. With the support of an ‘if-else’ 
statement, rather than invocating the procedures of the 
algorithms featured, when the start node is adjacent to the 
goal node, Manhattan distance is used to determine whether 
a path containing the start and goal nodes only, should be 
compiled instantaneously; this is satisfied upon the distance 
between said nodes being estimated to the value of one. Also 
recognised as city block distance, a distance value of one 
infers that the distance between the start and goal nodes is 
estimated to be one cell relative to the grid, thus, meaning 
that the nodes form an adjacency and can further be 
traversed too directly. This mechanism although not 
officially recognised within the field, enhances the fluidity 
of Pac-Man’s traversal, without deferring from the original 
implementations of either algorithm supported by the study. 

C. Jack Moorin 

Dijkstra – requires that the shortest path between the 
starting node and each of the other traversable nodes within 
the graph is discovered to ensure the path between the start 
and target node is the shortest possible. On the basis that the 
graph used for our implementation of the Pac-Man game, 
the maze environment defined as a two-dimensional grid 
within the code, is an unweighted graph the distance of the 
shortest path between Pac-Man’s starting point and the 
target node can be referred to as the number of nodes 
traversed by the path between the two. To hold this distance 
for each node a two-dimensional array is defined that is the 
same size as the array used to define the maze environment. 
The start node’s distance is set to zero as it is already the 
node that the search will begin at and added as the first item 
in a queue. This queue is then iterated through with each 
iteration adding the traversable nodes neighbouring the 
currently iterated node to the list and setting their distance 
to be one higher than that of the currently iterated node as 
the neighbouring node is only a single traversal away from 
it. 

Once the list has been fully iterated every traversable 
node within the graph will have had a distance assigned 
equal to the minimum number of nodes that need to be 
traversed in order to reach it. By using these distances, it is 
possible to work backwards from the node of the targeted 
coin in order to find the shortest path to it from the starting 
node. A second queue is defined to hold the discovered path 
and the target node set as the first element. Looping until the 
target node has been set to the position of the start node, the 
first of the nodes neighbouring the current target node to be 
checked that has a distance value one less than that of the 
target node is appended to the path and becomes the new 
target node. This looped process will continue until the start 
node has been reached and which point the path queue will 
contain the shortest path between the target and the start 
nodes. Once it has been reversed it will then provide Pac-
Man with the path from its current node to the target node. 

 

Figure 6: Graphical visualization of the path expansion and 

deduction phases, of Dijkstra’s algorithm. Relative to 

environment of the Pac-Man game. 

Iterative Deepening Depth-First Search – makes use of 
two functions in order to handle the recursive nature of the 
algorithm. The algorithm’s ‘root’ is the contents of the 
‘IDDFSearch’ function and is used to repeatedly call the 
second function, ‘DLS’, which performs the actual depth 
limited search functionality of the algorithm, with 
incrementally greater provided search depth until the search 
has discovered the target node. The ‘DLS’ function is 
defined as an ‘inner function’ within the ‘IDDFSearch’ 
function as the ‘DLS’ function needs access to the path list 
defined within the enclosing ‘IDDFSearch’ function. Before 
defining the inner ‘DLS’ function, the ‘IDDFSearch’ 
function defines the aforementioned path list as well as a, 
currently empty, list of nodes that have been already 
checked during the search process to avoid the algorithm 
repeating over itself. As the ‘DLS’ function can call itself 
recursively potentially multiple times, it is necessary for 
these to be defined outside of the function, so they are not 
overwritten following each execution of the function. 

The ‘DLS’ function takes in the parameters of the node 
to be searched next and the remaining depth left of the 
search. If the remaining depth is zero, the provided node is 
checked and if it is the target node returns it. If it not the 
target node however, the ‘None’ keyword is returned 
indicating that the target node was not found. If the 
remaining search depth is greater than zero, the ‘DLS’ 
function recursively calls itself upon the nodes 
neighbouring the provided node with one less search depth 
than was input to the current instance of the function. This 
recursive calling of the function is what gives the function 
its depth-first structure as, with sufficient search depths, the 
search function will be called on the start nodes first 
neighbour, which will then call the function on its first 
neighbour and so on. If the function returns here with the 
keyword ‘None’ then the completed search was 
unsuccessful, and the search algorithm is then called on the 
next neighbouring node. If a node index is returned 
however, then the search was successful, the current 
neighbouring node is appended to the path and is returned 
by the function. When the instance of the function called 
within the ‘IDDFSearch’ ‘root’ returns the search with the 
current search depth has been completed. If this instance of 
the function returns a node index, then the target node must 
have been found and the start node is appended to the path 
as its final node. If the ‘None’ keyword has been returned 
however then the current iteration of the search must not 
have been successful, the search depth is incremented by 
one and the search algorithm called again on the start node. 

D. Arpit Sharma 

Bidirectional Breadth-First Search – the algorithm has 
been implemented to find the shortest path between the 
starting node and the destination node in an unweighted 



grid, implying that the shortest path in length between then 
nodes is also the optimum. Two units of unidirectional 
Breadth-first algorithm have been used as subparts and are 
run simultaneously, from both the starting node (Pac-Man’s 
location) and the target (next closest coin location) towards 
each other. 

The ordinary Breadth-first algorithm uses the graph 
theory for path planning by exploring the nodes in a layer-
by-layer fashion. The algorithm starts at the root node and 
explores all the adjacent nodes. Then, for each adjacent 
node, it explores its neighbouring nodes one by one untill it 
reaches the target. It uses a First in First Out, ‘FIFO queue’ 
[51] for the nodes in the graph obtained by expanding their 
parent nodes. The unexplored or unvisited nodes are kept in 
a linked list or queue called ‘open’ and after being visited 
are placed in the ‘closed’ queue. The code contains two 
methods for the two phases to perform the path planning: 
‘space exploration’, and ‘shortest path deduction’. Figure 6 
shows the visualization of these phases, where blue cells are 
the cells that have been explored till that point, and the 
yellow line is the final shortest path calculated by the 
algorithm. 

In the space exploration phase, each unit performs its 
blind search generating a graph tree by traversing through 
the neighbouring nodes. At first, using the FIFO principal, 
the first entered node is popped from the ‘open’ queue. Then 
it explores all the unexplored neighbouring nodes (that is if 
they are not inside the ‘closed’ queue), before they are then 
appended to the open and closed queues.  Next each branch 
formed between the current and neighbouring node is added 
to the graph tree array. The method returns the generated 
graph tree. When the end of the graph tree is reached, 
meaning that there are no more neighbouring nodes to 
explore, the open queue starts emptying. 

The above phase runs simultaneously for both units. The 
exploration phase ends if any of the individual units explore 
the graph tree fully or a common node explored by them is 
found by checking the intersection of both closed queues, 
and hence, the algorithm enters the phase of path deduction. 

During the path deduction phase, the shortest path is 
deducted by each unit one by one by traversing the 
generated graph tree by moving in the opposite direction, 
from the target node till the start node is reached.   

The path calculated by the forward-moving BFS is 
added to the reversed path returned by the reverse moving 
BFS (to arrange the path in the proper sequence) and 
returned as a complete shortest path needed for the Pac-Man 
to traverse. 

 

Figure 7: Graphical visualization of the path expansion and 

deduction phases, of the Bidirectional variant of the Breadth-

First Search algorithm. Relative to environment of the Pac-Man 

game. 

Bidirectional Dijkstra – it also uses two units of the 
ordinary Dijkstra’s algorithm that has been used in the 
experiment as a complete algorithm, as a subpart, one for 
beginning the search from starting node (the Pac-Man’s 
current location) to the target node and the other unit for 
searching from the target node to the Pac-Man, in parallel, 
to find the shortest path between them. 

For the implementation of each unit, the code is divided 
into two phases, ‘space exploration’ and ‘path deduction’. 
Figure 7 illustrates the visualization of these phases.  As the 
unidirectional Dijkstra uses ‘tentative distance’ for 
calculating the distance from the current node to the 
neighbouring nodes by slowly ‘relaxing’ [52] them as it 
performs the exploration. So, initially, the tentative distance 
of the current source is zero (as the distance of the current 
node from itself is obviously, zero) and is added as the first 
item to the priority queue.  All the rest of the unexplored 
nodes have a tentative distance of infinity at this stage. 
Slowly the nodes are relaxed with the incremental increase 
in one unit distance as the depth of the generated graph tree 
increases, and as it is an unweighted graph (the single edge 
distance, the distance between adjacent nodes is considered 
equal to one unit). Each node in the graph tree has a tentative 
distance attached to it which will simply be the minimum 
number of nodes required to reach that node. The distance 
belonging to a node will keep on updating recursively as 
long as shorter distances to that node are found in the maze 
environment during the exploration phase.  A two- 
dimensional array has been used to keep a record of these 
distances (each node representing a cell in the maze 
environment). The above phase runs simultaneously for 
both the unidirectional units and the termination condition 
is met even if any of them traverses the graph tree fully or if 
they share a common explored node at any point.  

Next comes the path deduction phase, during which, 
each unit deduces the path from the graph tree, starting from 
the target node, and selecting the neighbour from all the 
neighbours with the lowest single edge distance from it 
recursively till the start node is found. The phase runs for 
both the units one by one, and the path returned by both units 
is combined after reversing the path returned by the reverse 
traversing unit to make their ends meet properly.  

Finally, that complete path is reversed (because the 
nodes were appended to the path oppositely during the 
phase deduction phase) and is returned as the shortest path 
that Pac-Man must traverse. 

 

Figure 8: Graphical visualization of the path expansion and 

deduction phases, of the Bidirectional variant of Dijkstra’s 

algorithm. Relative to environment of the Pac-Man game. 

VI. SOLUTION EVALUATION 

A. Common 

Proceeding from the implementation of each of the 
algorithms studied, the iterative testing functionality 



implemented for the Pac-Man variant, was utilised to 
recursively exercise the performance of each algorithm and 
compile each’s results in the format of an external text file 
(extension .txt). These results were then transferred to a 
spreadsheet file (extension .xlsx) for processing, where the 
mean and standard deviation of the total nodes traversed 
during each test iteration, and the total time taken by Pac-
Man to complete each of said tests, could then be calculated 
for sensibly rendering conclusions.  

The data compiled and representative of each algorithm 
is conveniently compressed into the table featured beneath 
this passage, which is then referred to, for evaluating each 
algorithms performance relative to the Pac-Man production. 
 

Shortest-Path 
Algorithm 

Nodes 
Traversed 
(Average) 

Nodes 
Traversed 
(Standard 
Deviation) 

Compilation 
Time 

Average 
(Seconds) 

Compilation 
Time 

Standard 
Deviation 
(Seconds) 

BFS 391.236 9.860 18.695 0.527 

A* 

(Manhattan) 
391.899 10.665 18.928 0.705 

A* 

(Chebyshev) 
391.924 10.665 19.136 0.605 

Bidirectional BFS 391.236 9.860 19.140 1.298 

A* 

(Octile) 
391.924 10.665 19.169 0.799 

Bidirectional A* 

(Octile) 
402.528 11.817 19.214 0.694 

A* 

(Euclidean) 
395.069 9.613 19.237 0.556 

Dijkstra 391.236 9.860 19.257 0.774 

Bidirectional A* 

(Chebyshev) 
397.045 12.075 19.280 0.675 

Bidirectional A* 

(Euclidean) 
404.608 9.197 19.412 0.456 

Bidirectional 

Dijkstra 
391.236 9.860 19.422 0.505 

Bidirectional A* 

(Manhattan) 
403.097 10.537 19.554 1.180 

IDDFS 404.847 18.020 19.656 0.996 

DFS 641.243 89.806 31.834 4.837 

 

Table 1: The results compiled for the testbed configured, 

displaying the performance of each of the implemented 

algorithms, ranked relative to the time of their operations and 

cumulative path-cost incurred. 

B. Adam Hubble 

 Proceeding from the iterative nature of experimentation 
led for this investigation, numerical results concerning the 
number of nodes traversed by the Pac-Man avatar and the 
computational time taken for Pac-Man to navigate all 
traversable nodes in the grid, were compiled, for the number 
of traversable nodes available. Which is representative of 
the number of experimental runs executed (two-hundred-
and-eighty-eight), per algorithm constituting to the study. 
Through applying concepts of statistical analysis to the self-
populated dataset, mean and standard deviation statistics 
could be derived for better portraying a relative, 
performance comparison between each algorithms 
search(es). 

 A* – in correspondence with the numerical results 
displayed in Table 1, comparatively, the A* algorithm 

proves to be somewhat optimal with the likes of the 
Breadth-First Search algorithm. As is evidenced by A* 
amassing an average of ‘391.899’ nodes traversed, with an 
averaged compilation time of ’18.928’ seconds, compared 
to BFS’s ‘391.236’ nodes traversed and compilation time of 
’18.695’ seconds. Noticeably, the heuristic method applied 
to the A* algorithm to achieve such result was Manhattan 
distance, which as previously told to be a good heuristic for 
grid-based maps, fulfils its expectations as being accurate 
for the horizontal and vertical restraints of Pac-Man’s 
traversal capability. Whereby, it is observed that the 
Chebyshev, Octile and Euclidean distance metrics are 
performatively degrading; given by their increased number 
of nodes traversed and time taken for Pac-Man to attain all 
coin collectibles, on average. However, the Chebyshev and 
Octile variants yield a similar performance to the Manhattan 
variant, respective of the Euclidean variant as 
performatively being the worst. As does the bidirectional 
variants of BFS and A* when the active heuristic method 
concerns Octile distance. Although A* is regarded as being 
the provably optimal algorithm across various applications, 
as already explored, its suboptimality in path-cost when 
relative to the BFS algorithm, can be considered a defect of 
the heuristic function that it employs. Where acknowledged 
prior, it is sometimes possible for the algorithm to 
overestimate the actual path cost, for which the heuristic is 
then not considered admissible, as the path returned may not 
be representative of the shortest path possible. This may 
occur due to the unweighted nature of the grid that Pac-Man 
traverses through, providing that it would be possible for 
every node to be calculated as being the same distance from 
the goal. 

 Moreover, relating to the deviation between each 
experimental run of the algorithm, all heuristic variants of 
the A* algorithm offer a degree of consistency in their 
search, where unexpectedly, A* in use of the Euclidean 
distance metric yields the smallest deviation in nodes 
traversed ‘9.613’ (nodes) and compilation time ‘0.556’ 
(seconds) amassed, across all experimental runs. Generally, 
it can be surveyed that the A* algorithm is somewhat 
consistent by comparison to the other featured algorithms, 
where only BFS and the bidirectional variants of Dijkstra’s 
algorithm and A* are able to compete. Such that the A* 
algorithm when using Euclidean distance, ranks fourth out 
of all other algorithms and their variants. Inevitably, the 
heuristic function being invocated appears to affect the 
performance of the A* algorithm, as is evidenced by 
commonality extracted from the results. That is heuristics 
with higher rates of consistency within their search, cause 
Pac-Man to traverse more sub-optimal paths, than the 
heuristics that demonstrate less consistency. 

 Providing the space complexity and unweighted nature 
of the game’s environment, it is feasible that the A* 
algorithm can be a sub-optimal solution, relative to 
compilation time, due to the memory expense incurred from 
heuristic calculations in a simple environment; for which 
BFS can empower within, due to the lack of heuristic 
involvement on its search. Despite the outcome presented, 
the performance of the A* algorithm should not be 
overlooked, as within more complex and vaster 
environments, the algorithm claims its optimality, when 
aligned within the literature reviewed. As well, on average, 
A* shares the optimal path-cost of ‘391’ nodes traversed, 



which assumes an equivalence with BFS and both variations 
of Dijkstra’s algorithm, relative to their completeness. 

 Bidirectional A* – in continued mention of Table 1, A* 
algorithms bidirectional variant is seemingly non-optimal, 
for which is one of the least-performing algorithms of the 
study, ranking sixth (at best) and twelfth (at worst). As is 
backed by the numerical results compiled, Bidirectional A* 
when using the Octile distance heuristic, amasses an 
average of ‘402.528’ nodes traversed and a compilation 
time of ’19.214’ seconds, for enabling Pac-Man to obtain all 
the coin collectibles in its environment. These scores are 
comparatively higher to the likes of BFS, A* and Dijkstra’s 
algorithm, as previously entertained. Once again, the 
heuristic method active in the algorithms search vastly 
affects its capability of rendering an optimal path, where 
between each of the heuristic methods sponsored by the 
investigation, the deviation in average nodes traversed 
accumulates ‘7.563’ nodes. Evidentially, the deviation is 
substantial when compared to results obtained for A*, that 
only deviates between an average of ‘3.17’ nodes traversed; 
hence, the performance of Bidirectional A* deviates twice 
as much, on average, relative to the cost of the path 
generated. Thus, the performance of Bidirectional A* is 
sought unreliable and negligent to path optimisation, in the 
context of our investigation. 

 Unusually, the Octile variant of the algorithm is 
performatively best, in which traverses fewer nodes on 
average and within a shorter period; this behaviour is not 
anticipated, when considering that the metric is regarded 
optimal for diagonal-driven movements of agents. Where 
inversely, the better expected heuristic: Manhattan distance, 
is proven to be performatively worse instead, in terms of 
average compilation time ‘19.554’ (seconds) and the 
deviation ‘1.180’ (seconds) therein; thus, opposing all 
expectations of outcome, that presents no correlation with 
the performance of unidirectional A*. Immediately, given 
the deviation amount announced, it is once again plausible 
that the bidirectional variant of the A* algorithm too 
experiences heuristic overestimation, thus returning paths 
not considered admissible; this is sensible to assume, 
providing that the paths of multiple searches are ideally 
merged around the point of intersection. In which, with 
reference to prior discussions regarding the algorithm’s 
polarity, cost overestimation and performance degradation 
generally, could be resultant of the intersection detection 
conditions adequacy; that when the two search operations 
do not connect central to the start node and goal node, the 
searches non-ideally expand more nodes and incur memory 
and time expenses before a point of intersection can be 
detected. Hence, the search time has the potential of being 
doubled, as revealed previously, where the path generated 
can also be sub-optimal, relative to cost.  

 Given this observation, it would be sensible to revise the 
termination condition of the bidirectional variant of A*, in 
attempt to yield performatively optimal results, as initially 
anticipated from its implementation. Conclusively, 
Bidirectional A* does not fulfil its expectations for choice 
in the study but it is acknowledged useful, in less object-
dense areas of an environment, that Pac-Man, the game, 
does not entertain. 

C. Jack Moorin 

Dijkstra – following the iterative testing of the 
implemented Dijkstra’s algorithm within the Pac-Man 

variant, the average and standard deviation of the nodes 
traversed by Pac-Man during each test and its total time 
taken were calculated along with the results for the other 
algorithms. The Dijkstra algorithm enabled Pac-Man to 
collect every coin node after traversing an average of 
‘391.236’ nodes with a standard deviation of ‘9.859’. This 
average value as well as the standard deviation of the values 
was shared by the BFS algorithm as well as the bi-
directional implementations of both. When ranked against 
the results of the other implemented algorithms these four 
algorithms rank jointly in first place with the lowest number 
of total nodes traversed. This can be attributed to the fact 
that BFS, Dijkstra and their bidirectional implementations 
always output the shortest path between the start and target 
nodes, which is why their total nodes traversed are always 
the same across the large amount of completed tests and 
were also the lowest nodes traversed resulting from all the 
implemented algorithms. 

While the Dijkstra implementation does manage to 
output the optimal path between the start and target nodes, 
it is let down by its performance as the algorithm will always 
find the shortest path between the starting node and every 
other map in the graph, even if the targeted node is only a 
short distance from the start, largely impacting the time 
taken to compute the algorithm. The average time taken for 
Pac-Man while using Dijkstra’s algorithm to collect every 
coin node within the graph is ‘19.257’ seconds with a 
standard deviation of ‘0.773’ seconds. When ranked this 
places Dijkstra’s algorithm as the eighth fastest algorithm to 
use despite the fact that it always generates the shortest path 
for Pac-Man to traverse. It is worth noting that the BFS 
algorithm, which also always finds the shortest path 
between the nodes and is notably less complex, is ranked 
first for the lowest amount of time taken to collect all the 
coin nodes within the graph. 

In consideration of the algorithm’s performance, even 
though Dijkstra’s algorithm does manage to always find the 
optimum path between the start and target nodes, in practice 
its performance is hampered considerably by its own 
complexity, resulting in it being ranked below other 
algorithms that do not always generate the optimum path 
between nodes in time taken to collect all the coin nodes as 
they are able to make up for this by being less 
computationally expensive to compute than Dijkstra. 

Iterative Deepening Depth-First Search – conversely to 
Dijkstra’s algorithm, IDDFS does not always output the 
shortest path between nodes and is in fact ranked as the 13th 
best algorithm for total nodes traversed (one from last) due 
to the sub-optimal paths it creates, having an average of 
‘404.847’ total nodes traversed per test, with a standard 
deviation of ‘18.019’. The only algorithm in fact IDDFS 
managed to outperform in total number of nodes traversed 
is its non-depth limited Depth-First Search algorithm 
counterpart, which has the anomalously high number of 
total nodes traversed of ‘641.243’ with a standard deviation 
of ‘89.805’. If this performance of the non-depth limited 
variant of IDDFS is in fact considered to be anomalously 
high and DFS removed from consideration as a pathfinding 
algorithm IDDFS is the least successful of all the 
implemented algorithms are finding the optimum path 
between Pac-Man and the targeted node. 

IDDFS is also ranked as 13th in the average time taken 
to traverse the graph collecting all the coin nodes with an 



overall average time of ‘19.655’ seconds and a standard 
deviation of ‘0.996’ seconds. Depth-First Search is again the 
lowest ranked algorithm due to its anomalously high 
average time of ‘31.833’ seconds, with a standard deviation 
of ‘0.996’ seconds. If the performance of DFS is again 
considered to be anomalous here IDDFS becomes the 
longest of all the algorithms to run as well as being the least 
successful in finding the optimal path between the start and 
target nodes. 

In consideration of the algorithm’s overall performance 
IDDFS was both the least successful algorithm in generating 
an optimal path between the start and target nodes and took 
the longest of all the algorithms to collect every coin node. 
While the non-depth limited DFS algorithm performed even 
worse than IDDFS, its own performance is so much worse 
than that of the algorithms that it is considered to be 
anomalous, leaving IDDFS as the worst of all the 
algorithms. 

D. Arpit Sharma 

In this Pac-Man variant, the Pac-Man is supposed to 
collect all the coins present in the environment, in as little 
time and nodes traversed as possible. The movement of Pac-
Man instead of being manually controlled is handled by the 
algorithm being tested. The test is run for each algorithm for 
the number of empty cells in the maze with the Pac-Man 
starting from each of them, iteratively. The time taken and 
the nodes traversed on each iteration are stored in the 
respective files of the algorithms being run, named after the 
algorithm, and are stored in the results folder. This forms the 
benchmark, made, and then used for the experiment. 

Nodes traversed – both the implemented Bidirectional 
BFS algorithm and the Bidirectional Dijkstra algorithm 
tested to have on average traversed nodes to be 391.236 with 
an equal standard deviation of fewer than 10 nodes. This 
means that the Pac-Man treaded this number of nodes in the 
maze to collect all coins, on average. This also happens to 
be the lowest number of average nodes traversed in the 
experiment, and the same results are shared by their 
unidirectional variants as well. This can be said from the 
results that these algorithms follow the shortest path, which 
is one of the main aims of the experiment. Also, since their 
respective unidirectional variants also gave exactly the same 
results (both the average and the standard deviation), it 
means there is no difference in the final path calculated by 
the unidirectional and bidirectional variants. This reason is 
supposed to be the fact that the unidirectional subparts of the 
bidirectional variants explore many nodes before meeting 
each other in the middle that there is no room for error left, 
unlike bidirectional A* variants. 

Time Taken to collect all coins – but the average time 
taken for collecting all the coins for the bidirectional BFS 
variant is 19.140 seconds, which is little more than taken by 
the unidirectional BFS (18.695 seconds). Theoretically, it 
was expected to be quicker than the unidirectional one as it 
possesses much less space and time complexity, but the 
results are an outcome of the reason that the coins in this 
Pac-Man variant are adjacent to each other. Therefore, the 
next closest coin, the Pacman must collect is often, very next 
to it and sometimes they just have a single empty cell 
between them. As the Bidirectional Breadth-First Search 
explores the nodes layer by layer, from both the starting 
node (Pac-Man’s position) and the target position (next 
closest coin, lying very next to it), it ends up exploring four 

nodes (two nodes per its each unidirectional unit) plus an 
intersecting node checking (which in itself is an expensive 
operation) to calculate the path, as compared to 
unidirectional BFS, which just explores two nodes. Even 
when there is an empty cell between the Pac-Man and the 
coin to be collected (which happens very often), the 
bidirectional variant must perform four nodes (two from 
each end), and an intersection check. Although the 
unidirectional BFS also must explore four nodes (two on 
both sides), it does not have to perform any intersection 
checking.  

Hence, in these cases, the bidirectional variant expends 
much more computational power and time as compared to 
the unidirectional algorithm leading to poor performance in 
terms of average time taken to collect all coins. The same 
reason can be extended to explain the poor performance of 
Bidirectional Dijkstra, at 19.422 seconds when compared to 
its unidirectional equivalent, which is 0.165 seconds quicker 
than it on an average. Therefore, the bidirectional variants 
seem less efficient than their unidirectional variants when 
the target is too close to the source. 

 Algorithm completeness – it was seen whether the 
algorithms get stuck in any of the iterations, meaning that 
they traverse the part of the generated graph without the goal 
and are unable to reach the goal. As expected, both the 
algorithms did not glitch anytime proving that the 
algorithms are ‘complete’ algorithms and hence, unfailingly 
finds the target every time. It makes them suitable for 
making glitch-free video games, the importance of which 
has been discussed in earlier sections. 

VII. CONCLUSION 

A. Exercising Performance 

 With respect to the benchmarks used to measure the 
performance of the implemented algorithms, the total 
number of nodes traversed by Pac-Man during a test 
iteration is a good metric to use to compare and contrast the 
ability of each of the algorithms to output the optimum path 
between the provided nodes. For example, when analysing 
the compiled results table, it can be easily deduced that the 
DFS algorithm is considerably less efficient at finding the 
optimum path than the other algorithms as the paths it output 
were long enough to cause Pac-Man to traverse over one and 
a half times as many nodes within the maze than any of the 
other algorithms. 

 The second of the implemented metrics, the length of 
time in seconds of each test, is used to infer the overall 
efficiency of the algorithm at generating a path for Pac-Man 
to take through the maze. This metric unfortunately is not a 
wholly accurate representation of an algorithms 
computational efficiency as it also includes the time taken 
for Pac-Man to traverse the paths output by the algorithm 
and is therefore also impacted by its ability to find an 
optimum path. A better implementation of a time-based 
metric could have been to measure the total time taken 
during the computation of each algorithm only to remove 
output path length as a factor. Despite this, the metric does 
still provide a good idea of each algorithm’s computational 
complexity, as a notable difference can be seen between the 
length of time taken by less computationally expensive 
algorithms, such as BFS, and those that were more 
computationally expensive, such as Dijkstra. 



B. Findings 

 Adam Hubble – in response to the numerical findings of 
the iterative, experimental procedure conducted, it is 
inevitable that the Breadth-First Search (BFS) algorithm 
proves to be performatively optimal compared to all other 
algorithms trialled in the investigation. Averaging ‘391.236’ 
nodes traversed, within a compilation time equating to 
’18.695’ seconds. Both of which metrics are the least 
significant by value; BFS also presents the shared-most 
consistency in nodes traversed across all iterations of the 
experimentation and ranks second for compilation time 
consistency also. Thus, it can be reasoned that BFS not only, 
always computes the shortest possible path between the 
position of Pac-Man, the start node, and a specified goal 
node, but is also the candidate algorithm for enabling Pac-
Man to traverse efficiently throughout the maze type of 
environment configured. This is assumed to be in cause of 
the algorithms low computational-overhead, that enables 
compilation times to be curtailed and for Pac-Man to then 
initiate traversal behaviours faster. 

 Competing with BFS, the A* algorithm when applying 
the Manhattan distance heuristic, is also proven to be a 
successful candidate for the path optimisation domain but is 
rendered sub-optimal, for the investigation conducted. This 
is presumed to be in effect of the computational expense 
arisen by the calculations and appliance of heuristics in its 
search, which within smaller and simpler environments, are 
consequential to its performative capability. Thereby, one 
can assume a different outcome for environments with 
increasingly complex structural arrangements, and with 
more obstacle-dense areas; providing what is already known 
about the optimality of the A* algorithm in the field. 

 Moreover, it is imperative to note that all bidirectional 
variants of the algorithms investigated are less 
performatively optimal, when compared to their 
unidirectional counterparts. This is evidenced by each 
algorithm computing paths that are either non-optimal or are 
optimal but are instead compiled within longer periods. 
Each algorithms performance is assumed to be affected by 
a collective of factors, that concern the start and goal nodes 
being too close to each other, thus rendering a bidirectional 
search expensive and impractical. As well, as the 
performance implications concerned with detecting 
intersecting nodes, in each search programs path.  

 In continued discussion of performative degradation, 
evidently Depth-First Search (DFS) and its variant: 
Iterative-Deepening Depth-First Search (IDDFS), prove to 
be the worst algorithms performatively; as is given by the 
average number of nodes traversed and compilation times 
amassed, that are significantly greater than all other 
solutions trailed. We can declare such performance to be 
relative to the deepening focuses of either algorithm, that 
favours distance in their search and renders them 
incomplete; as the production operates with a grid and not 
explicitly a graph tree, the algorithm consequently compiles 
a path using an elongated pattern within its search. Thus, 
Pac-Man traverses more nodes, for which is why its 
application is not recommended. 

Jack Moorin – the results compiled by the Pac-Man 
variants iterative testing show that the most successful of all 
the implemented algorithms was clearly the Breadth-First 
Search algorithm. BFS not only always output the optimum 
path between Pac-Man and the target node but was also the 

fastest of all the algorithms to run likely due to it having 
very little computational complexity. It is likely due to this 
low computational complexity that it was the most 
successful of the algorithms as other methods which always 
output the shortest path between nodes, such as Dijkstra, 
were outperformed by methods which do not but made up 
for the time lost navigating unnecessarily long paths by 
being notably less complex and faster to run. It is worth 
noting however, that BFS is only able to find the optimum 
path between nodes within an unweighted graph as it search 
process is carried out on the basis of exploring the nodes 
neighbouring those that have already been searched without 
any considerations made for weight. 

The results also clearly show that the least successful of 
all the implemented algorithms was the Depth-First Search 
algorithm which output the longest paths between nodes and 
also took the longest amount of time for Pac-Man to collect 
every coin node. Given that the DFS algorithm has the same 
computational complexity as the BFS algorithm, the fastest 
of the implemented algorithms, the amount of time taken by 
Pac-Man to complete each test can largely be attributed to 
the length of the paths output as opposed to the algorithm 
being incredibly complex. 

Arpit Sharma – this experiment concludes that the 
bidirectional variants of the Breadth-First Search algorithm 
and Dijkstra algorithm are as promising and reliable as their 
unidirectional equivalents in an unweighted grid, in terms of 
successfully finding the shortest path, that relates to the 
algorithm’s completeness. But the bidirectional algorithms 
seem to lag behind their unidirectional variants in terms of 
time, when there is just a ‘single edge distance’ between the 
‘starting node’ and the ‘target node’, or if they just have a 
single node between them in the graph tree. 

As the size of the map is very small and simple, it can 
be afforded to explore all possible nodes using a simple 
algorithm like BFS algorithm or Dijkstra algorithm. This is 
supposed to be the reason behind the best performance of 
the BFS algorithm in the experiment. But, if the complexity 
of the map would increase, the performance is expected to 
worsen and that of more complex algorithms, which make 
use of a variety of heuristics like A* is supposed to go up.  

The performance of the DFS algorithm and IDDFS 
algorithm is worse among all other algorithms tested. It is 
believed to be because of the fact they are not optimal 
algorithms.  As the complexity of the map would increase, 
their chances of getting trapped inside an infinite loop is 
expected to increase, leading to glitches, if used for video 
games. 

C. Future Work 

Following the completion of the study, plans and other 
ideas can be formulated regarding the completion of future 
work, which continues to expand upon the research 
completed as part of this study. As discussed in the literature 
review, the Shortest-Path Problem (SSP) is an ‘important 
problem’ [11] with many applications, such that further 
work is warranted into the development and testing of novel 
algorithms and approaches, in attempt to solve the problem 
more effectively. As demonstrated within the study, 
numerous methods already exist that can be used to compile 
a path between two given nodes in a graph, however, not all 
of these methods are assured to consistently compute the 
optimal path between the nodes; specifically those 



identified to often face an overwhelming decrease in 
efficiency, when faced with increasing space and time 
complexities. 

The development of an algorithm that could consistently 
compile an optimal path whilst not suffering from the same 
performance issues of other algorithms, such as Dijkstra, 
would be a notable achievement and part of a further branch 
of study in continuation of this project. Such that this study 
aims to proof some of the most popular and contemporary 
attempts led into pathfinding, by researchers in the fields of 
CI and AI alike.  

D. Challenging Encounters 

During the completion of this study, one of the leading 
challenges confronted was the successful collaboration of 
three geographically distanced individuals, each of whom 
was attempting to contribute to the common work of the 
study submitted. Due to the intervention of the COVID-19 
pandemic, the members of the study were unable to 
physically meet in-person, to collaborate and express ideas 
thoughtfully, and instead had to make use of online 
messaging tools to ground a means of communication. This 
medium of collaboration has undoubtedly had impact on the 
quality of communication between group members, that 
often led to instances of miscommunication and resultant 
time wasted on group members completing collaborative 
tasks, that were formerly tackled by a group member in 
advance of notice being reciprocated. 

Another difficulty encountered was resultant of the 
geographical distance that separates each study member, 
such that each member would attempt to work on the same 
document for the project report, or the code solution 
comprising the implementation of the Pac-Man variant, 
simultaneously. This once more, contributed to time being 
wasted, due to the miscommunications of group members, 
that often distorted the works progression, relative to 
acknowledging the components of the work that were 
agreed complete and outstanding. The impacting factor that 
this contest had on the project, however, was the amount of 
time that was wasted, from continually merging the works 
of each study member into a collaborative document. 

For the foreseeable future, it would be recommended to 
utilize cloud-based software’s that entertain collaborative 
efforts, to mitigate the extreme of time being wasted and to 
resultingly hasten a projects progression. With reference to 
each study member’s investment into the investigation led, 
refer to Appendix A and Appendix B accordingly. 

Despite all the difficulties listed, collectively, we believe 
that the quality of work submitted exceeds the expectations 
supposed for an investigation of a similar scope. Thus, we 
remark this work as a model for future works in the field of 
pathfinding. 
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Figure 9: 'ProjectManagementACI' spreadsheet file (.xlsx), capturing the 'Activity Log' worksheet used to record the 

working commitments and time investments of each member of the study. 



Appendix B:

 

Figure 10: 'ProjectManagementACI' spreadsheet file (.xlsx), capturing the 'Meeting Backlog’ worksheet used to record the collaborative 

efforts and assemblies of the study members, with relevance to each’s nature. 


